Docosahexaenoic acid (DHA), a long-chain omega-3 polyunsaturated fatty acid, has been used to treat a range of different conditions, including periodontal disease (PD) and inflammatory bowel disease (IBD). That DHA helps with these oral and gastrointestinal diseases in which inflammation and bacterial dysbiosis play key roles, raises the question of whether DHA may assist in the prevention or treatment of other inflammatory conditions, such as the metabolic syndrome, which have also been linked with inflammation and alterations in normal host microbial populations. Here we review established and investigated associations between DHA, PD, and IBD. We conclude that by beneficially altering cytokine production and macrophage recruitment, the composition of intestinal microbiota and intestinal integrity, lipopolysaccharide- and adipose-induced inflammation, and insulin signaling, DHA may be a key tool in the prevention of metabolic syndrome.
References
[1]
Lu, G. The role of n-3 polyunsaturated fatty acid on coronary heart disease. Zhonghua Xin Xue Guan Bing Za Zhi 1990, 18, 279–281.
[2]
Wu, J.H.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107 (Suppl. 2), 214–227.
[3]
Turner, D.; Steinhart, A.H.; Griffiths, A.M. Omega 3 fatty acids (fish oil) for maintenance of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2007, doi:10.1002/14651858.CD006443.pub2.
[4]
Turner, D.; Zlotkin, S.H.; Shah, P.S.; Griffiths, A.M. Omega 3 fatty acids (fish oil) for maintenance of remission in crohn’s disease. Cochrane Database Syst. Rev. 2007, doi:10.1002/14651858.CD006320.pub2.
[5]
Sydenham, E.; Dangour, A.D.; Lim, W.S. Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst. Rev. 2012, doi:10.1002/14651858.CD005379.pub3.
[6]
Sarris, J.; Mischoulon, D.; Schweitzer, I. Omega-3 for bipolar disorder: Meta-analyses of use in mania and bipolar depression. J. Clin. Psychiatry 2012, 73, 81–86, doi:10.4088/JCP.10r06710.
Oliver, C.; Jahnke, N. Omega-3 fatty acids for cystic fibrosis. Cochrane Database Syst. Rev. 2011, doi:10.1002/14651858.CD002201.pub3.
[9]
Russell, F.D.; Burgin-Maunder, C.S. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar. Drugs 2012, 10, 2535–2559, doi:10.3390/md10112535.
[10]
Marion-Letellier, R.; Savoye, G.; Beck, P.L.; Panaccione, R.; Ghosh, S. Polyunsaturated fatty acids in inflammatory bowel diseases: A reappraisal of effects and therapeutic approaches. Inflamm. Bowel Dis. 2013, 19, 650–661, doi:10.1097/MIB.0b013e3182810122.
[11]
El-Sharkawy, H.; Aboelsaad, N.; Eliwa, M.; Darweesh, M.; Alshahat, M.; Kantarci, A.; Hasturk, H.; van Dyke, T.E. Adjunctive treatment of chronic periodontitis with daily dietary supplementation with omega-3 fatty acids and low-dose aspirin. J. Periodontol. 2010, 81, 1635–1643, doi:10.1902/jop.2010.090628.
[12]
Weylandt, K.H.; Chiu, C.Y.; Gomolka, B.; Waechter, S.F.; Wiedenmann, B. Omega-3 fatty acids and their lipid mediators: Towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat. 2012, 97, 73–82, doi:10.1016/j.prostaglandins.2012.01.005.
[13]
Robinson, L.E.; Buchholz, A.C.; Mazurak, V.C. Inflammation, obesity, and fatty acid metabolism: Influence of n-3 polyunsaturated fatty acids on factors contributing to metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007, 32, 1008–1024, doi:10.1139/H07-087.
[14]
Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; american heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645, doi:10.1161/CIRCULATIONAHA.109.192644.
[15]
Tsioufis, C.; Kasiakogias, A.; Thomopoulos, C.; Stefanadis, C. Periodontitis and blood pressure: The concept of dental hypertension. Atherosclerosis 2011, 219, 1–9, doi:10.1016/j.atherosclerosis.2011.04.030.
[16]
Lockhart, P.B.; Bolger, A.F.; Papapanou, P.N.; Osinbowale, O.; Trevisan, M.; Levison, M.E.; Taubert, K.A.; Newburger, J.W.; Gornik, H.L.; Gewitz, M.H.; et al. Periodontal disease and atherosclerotic vascular disease: Does the evidence support an independent association?: A scientific statement from the american heart association. Circulation 2012, 125, 2520–2544, doi:10.1161/CIR.0b013e31825719f3.
[17]
Elkhouli, A.M. The efficacy of host response modulation therapy (omega-3 plus low-dose aspirin) as an adjunctive treatment of chronic periodontitis (clinical and biochemical study). J. Periodontal Res. 2011, 46, 261–268, doi:10.1111/j.1600-0765.2010.01336.x.
[18]
Kantarci, A.; van Dyke, T.E. Lipoxin signaling in neutrophils and their role in periodontal disease. Prostaglandins Leukot. Essent. Fatty Acids 2005, 73, 289–299, doi:10.1016/j.plefa.2005.05.019.
[19]
Rosenstein, E.D.; Kushner, L.J.; Kramer, N.; Kazandjian, G. Pilot study of dietary fatty acid supplementation in the treatment of adult periodontitis. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 213–218, doi:10.1016/S0952-3278(02)00272-7.
Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.F.; Gasche, C.; Geboes, K.; et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a working party of the 2005 montreal world congress of gastroenterology. Can. J. Gastroenterol. 2005, 19 (Suppl. A), 5–36.
[22]
Shores, D.R.; Binion, D.G.; Freeman, B.A.; Baker, P.R. New insights into the role of fatty acids in the pathogenesis and resolution of inflammatory bowel disease. Inflamm. Bowel Dis. 2011, 17, 2192–2204, doi:10.1002/ibd.21560.
[23]
Cheifetz, A.S. Management of active crohn disease. JAMA 2013, 309, 2150–2158, doi:10.1001/jama.2013.4466.
[24]
Lichtenstein, G.R.; Hanauer, S.B.; Sandborn, W.J. Management of crohn’s disease in adults. Am. J. Gastroenterol. 2009, 104, 465–483, doi:10.1038/ajg.2008.168.
Brenna, J.T. Efficiency of conversion of α-linolenic acid to long chain n-3 fatty acids in man. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 127–132, doi:10.1097/00075197-200203000-00002.
[27]
Hoshi, T.; Wissuwa, B.; Tian, Y.; Tajima, N.; Xu, R.; Bauer, M.; Heinemann, S.H.; Hou, S. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proc. Natl. Acad. Sci. USA 2013, 110, 4816–4821, doi:10.1073/pnas.1221997110.
[28]
Lopez-Huertas, E. The effect of EPA and DHA on metabolic syndrome patients: A systematic review of randomised controlled trials. Br. J. Nutr. 2012, 107 (Suppl. 2), 185–194, doi:10.1017/S0007114512001572.
[29]
Geleijnse, J.M.; Giltay, E.J.; Grobbee, D.E.; Donders, A.R.; Kok, F.J. Blood pressure response to fish oil supplementation: Metaregression analysis of randomized trials. J. Hypertens. 2002, 20, 1493–1499, doi:10.1097/00004872-200208000-00010.
[30]
Morris, M.C.; Sacks, F.; Rosner, B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation 1993, 88, 523–533, doi:10.1161/01.CIR.88.2.523.
[31]
Dewell, A.; Marvasti, F.F.; Harris, W.S.; Tsao, P.; Gardner, C.D. Low- and high-dose plant and marine (n-3) fatty acids do not affect plasma inflammatory markers in adults with metabolic syndrome. J. Nutr. 2011, 141, 2166–2171.
[32]
Neff, L.M.; Culiner, J.; Cunningham-Rundles, S.; Seidman, C.; Meehan, D.; Maturi, J.; Wittkowski, K.M.; Levine, B.; Breslow, J.L. Algal docosahexaenoic acid affects plasma lipoprotein particle size distribution in overweight and obese adults. J. Nutr. 2011, 141, 207–213, doi:10.3945/jn.110.130021.
[33]
Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584, doi:10.1056/NEJMoa1109400.
Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359, doi:10.1126/science.1124234.
[36]
Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723.
[37]
Wen, L.; Ley, R.E.; Volchkov, P.Y.; Stranges, P.B.; Avanesyan, L.; Stonebraker, A.C.; Hu, C.; Wong, F.S.; Szot, G.L.; Bluestone, J.A.; et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 2008, 455, 1109–1113, doi:10.1038/nature07336.
[38]
Dumas, M.E.; Barton, R.H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J.C.; et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 2006, 103, 12511–12516, doi:10.1073/pnas.0601056103.
[39]
Esteve, E.; Ricart, W.; Fernandez-Real, J.M. Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: Did gut microbiote co-evolve with insulin resistance? Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 483–490, doi:10.1097/MCO.0b013e328348c06d.
[40]
Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589, doi:10.1038/nrgastro.2012.156.
[41]
Blaut, M.; Klaus, S. Intestinal microbiota and obesity. Handb. Exp. Pharmacol. 2012, 209, 251–273, doi:10.1007/978-3-642-24716-3_11.
[42]
Ghoshal, S.; Witta, J.; Zhong, J.; de Villiers, W.; Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 2009, 50, 90–97.
[43]
Piya, M.K.; Harte, A.L.; McTernan, P.G. Metabolic endotoxaemia: Is it more than just a gut feeling? Curr. Opin. Lipidol. 2013, 24, 78–85, doi:10.1097/MOL.0b013e32835b4431.
[44]
Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, doi:10.1155/2010/289645.
[45]
Hellmann, J.; Tang, Y.; Kosuri, M.; Bhatnagar, A.; Spite, M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J. 2011, 25, 2399–2407, doi:10.1096/fj.10-178657.
[46]
Liu, Y.; Chen, F.; Odle, J.; Lin, X.; Jacobi, S.K.; Zhu, H.; Wu, Z.; Hou, Y. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J. Nutr. 2012, 142, 2017–2024, doi:10.3945/jn.112.164947.
[47]
Oliver, E.; McGillicuddy, F.C.; Harford, K.A.; Reynolds, C.M.; Phillips, C.M.; Ferguson, J.F.; Roche, H.M. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J. Nutr. Biochem. 2012, 23, 1192–1200, doi:10.1016/j.jnutbio.2011.06.014.
[48]
Titos, E.; Rius, B.; Gonzalez-Periz, A.; Lopez-Vicario, C.; Moran-Salvador, E.; Martinez-Clemente, M.; Arroyo, V.; Claria, J. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an m2-like phenotype. J. Immunol. 2011, 187, 5408–5418, doi:10.4049/jimmunol.1100225.
[49]
Palmer, C.D.; Mancuso, C.J.; Weiss, J.P.; Serhan, C.N.; Guinan, E.C.; Levy, O. 17(R)-Resolvin D1 differentially regulates TLR4-mediated responses of primary human macrophages to purified LPS and live E coli.. J. Leukoc. Biol. 2011, 90, 459–470, doi:10.1189/jlb.0311145.
[50]
Ukkola, O.; Santaniemi, M. Adiponectin: A link between excess adiposity and associated comorbidities? J. Mol. Med. (Berl.) 2002, 80, 696–702, doi:10.1007/s00109-002-0378-7.
[51]
Brandtzaeg, P. Inflammatory bowel disease: Clinics and pathology. Do inflammatory bowel disease and periodontal disease have similar immunopathogeneses? Acta Odontol. Scand. 2001, 59, 235–243, doi:10.1080/00016350152509265.
Kozarov, E.V.; Dorn, B.R.; Shelburne, C.E.; Dunn, W.A., Jr.; Progulske-Fox, A. Human atherosclerotic plaque contains viable invasive actinobacillus actinomycetemcomitans and porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 2005, 25, e17–e18, doi:10.1161/01.ATV.0000155018.67835.1a.
[54]
Gaetti-Jardim, E., Jr.; Marcelino, S.L.; Feitosa, A.C.; Romito, G.A.; Avila-Campos, M.J. Quantitative detection of periodontopathic bacteria in atherosclerotic plaques from coronary arteries. J. Med. Microbiol. 2009, 58, 1568–1575, doi:10.1099/jmm.0.013383-0.
[55]
Tonetti, M.S.; van Dyke, T.E. Periodontitis and atherosclerotic cardiovascular disease: Consensus report of the joint efp/aap workshop on periodontitis and systemic diseases. J. Periodontol. 2013, 84, S24–S29, doi:10.1902/jop.2013.1340019.
[56]
Kallus, S.J.; Brandt, L.J. The intestinal microbiota and obesity. J. Clin. Gastroenterol. 2012, 46, 16–24, doi:10.1097/MCG.0b013e31823711fd.
[57]
Musso, G.; Gambino, R.; Cassader, M. Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: Mechanisms and implications for metabolic disorders. Curr. Opin. Lipidol. 2010, 21, 76–83, doi:10.1097/MOL.0b013e3283347ebb.
[58]
Andersen, A.D.; Molbak, L.; Michaelsen, K.F.; Lauritzen, L. Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 303–309, doi:10.1097/MPG.0b013e31821d298f.
[59]
Nielsen, S.; Nielsen, D.S.; Lauritzen, L.; Jakobsen, M.; Michaelsen, K.F. Impact of diet on the intestinal microbiota in 10-month-old infants. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 613–618, doi:10.1097/MPG.0b013e3180406a11.
[60]
Wall, R.; Marques, T.M.; O’Sullivan, O.; Ross, R.P.; Shanahan, F.; Quigley, E.M.; Dinan, T.G.; Kiely, B.; Fitzgerald, G.F.; Cotter, P.D.; et al. Contrasting effects of bifidobacterium breve ncimb 702258 and bifidobacterium breve dpc 6330 on the composition of murine brain fatty acids and gut microbiota. Am. J. Clin. Nutr. 2012, 95, 1278–1287, doi:10.3945/ajcn.111.026435.
Rawn, D.F.; Breakell, K.; Verigin, V.; Nicolidakis, H.; Sit, D.; Feeley, M.; Ryan, J.J. Persistent organic pollutants in fish oil supplements on the canadian market: Polychlorinated dibenzo-p-dioxins, dibenzofurans, and polybrominated diphenyl ethers. J. Food Sci. 2009, 74, T31–T36, doi:10.1111/j.1750-3841.2009.01143.x.
[63]
Rawn, D.F.; Breakell, K.; Verigin, V.; Nicolidakis, H.; Sit, D.; Feeley, M. Persistent organic pollutants in fish oil supplements on the canadian market: Polychlorinated biphenyls and organochlorine insecticides. J. Food Sci. 2009, 74, T14–T19, doi:10.1111/j.1750-3841.2008.01020.x.