Na?ve humans and rats voluntarily consume little ethanol at concentrations above ~6% due to its aversive flavor. Developing procedures that boost intake of ethanol or ethanol-paired flavors facilitates research on neural mechanisms of ethanol-associated behaviors and helps identify variables that modulate ethanol intake outside of the lab. The present study explored the impact on consumption of ethanol and ethanol-paired flavors of nutritionally significant parametric variations: ethanol vehicle (gelatin or solution, with or without polycose); ethanol concentration (4% or 10%); and feeding status (chow deprived or ad lib.) during flavor conditioning and flavor preference testing. Individual differences were modeled by testing rats of lines selectively bred for high (HiS) or low (LoS) saccharin intake. A previously reported preference for ethanol-paired flavors was replicated when ethanol had been drunk during conditioning. However, indifference or aversion to ethanol-paired flavors generally obtained when ethanol had been eaten in gelatin during conditioning, regardless of ethanol concentration, feeding status, or caloric value of the vehicle. Modest sex and line variations occurred. Engaging different behavioral systems when eating gelatin, rather than drinking solution, may account for these findings. Implications for parameter selection in future neurobiological research and for understanding conditions that influence ethanol intake outside of the lab are discussed.
References
[1]
Abramson, C.I.; Kandolf, A.; Sheridan, A.; Donohue, D.; Bo?i?, J.; Meyers, J.E.; Benbassat, D. Development of an ethanol model using social insects: iii. Preferences for ethanol solutions. Psychol. Rep. 2004, 94, 39–227.
[2]
Dudley, R. Fermenting fruit and the historical ecology of ethanol ingestion: Is alcoholism in modern humans an evolutionary hangover? Addiction 2002, 97, 8–381, doi:10.1046/j.1360-0443.2002.00002.x.
Crabbe, J.C.; Phillips, T.J.; Belknap, J.K. The complexity of alcohol drinking: Studies in rodent genetic models. Behav. Genet. 2010, 40, 50–737.
[5]
Carrillo, J.; Howard, E.C.; Moten, M.; Houck, B.D.; Czachowski, C.L.; Gonzales, R.A. A 3-day exposure to 10% ethanol with 10% sucrose successfully initiates ethanol self-administration. Alcohol 2008, 42, 8–171.
[6]
Sharpe, A.L.; Samson, H.H. Ethanol and sucrose self-administration components: Effects of drinking history. Alcohol 2003, 29, 8–31.
[7]
Manzo, L.; Gómez, M.J.; Callejas-Aguilera, J.; Fernández-Teruel, A.; Papini, M.R.; Torres, C. Oral ethanol self-administration in inbred Roman high- and low-avoidance rats: Gradual versus abrupt ethanol presentation. Physiol. Behav. 2012, 108, 1–5.
[8]
Ackroff, K.; Sclafani, A. Flavor preferences conditioned by intragastric infusion of ethanol in rats. Pharmacol. Biochem. Behav. 2001, 68, 327–338, doi:10.1016/S0091-3057(00)00467-6.
[9]
Cunningham, C.L.; Niehus, J.S. Flavor preference conditioning by oral self-administration of ethanol. Psychopharmacology 1997, 134, 302–293.
[10]
Deems, D.A.; Oetting, R.L.; Sherman, J.E.; Garcia, J. Hungry, but not thirsty, rats prefer flavors paired with ethanol. Physiol. Behav. 1986, 36, 141–144.
[11]
Fedorchak, P.M.; Bolles, R.C. Hunger enhances the expression of calorie- but not taste-mediated conditioned flavor preferences. J. Exp. Psychol. Anim. Behav. Proc. 1987, 13, 9–73.
[12]
Sherman, J.E.; Hickis, C.F.; Rice, A.G.; Rusiniak, K.W.; Garcia, J. Preferences and aversions for stimuli paired with ethanol in hungry rats. Anim. Learn Behav. 1983, 11, 101–106, doi:10.3758/BF03212315.
[13]
Mehiel, R. Hedonic-Shift Conditioning with Calories. In The Hedonics of Taste; Bolles, R.C., Ed.; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1991; pp. 26–107.
[14]
Sclafani, A. Oral and postoral determinants of food reward. Physiol. Behav. 2004, 81, 773–779, doi:10.1016/j.physbeh.2004.04.031.
[15]
Carroll, M.E.; Morgan, A.D.; Anker, J.J.; Perry, J.L.; Dess, N.K. Selective breeding for differential saccharin intake as an animal model of drug abuse. Behav. Pharmacol. 2008, 19, 435–460, doi:10.1097/FBP.0b013e32830c3632.
Dess, N.K.; Chapman, C.D.; Cousins, L.A.; Monroe, D.C.; Nguyen, P. Refeeding after acute food restriction: Differential reduction in preference for ethanol and ethanol-paired flavors in selectively bred rats. Physiol. Behav. 2013, 109, 7–80.
[18]
Fortuna, J.L. Sweet preference, sugar addiction and the familial history of alcohol dependence: Shared neural pathways and genes. J. Psychoact. Drugs 2010, 42, 147–151, doi:10.1080/02791072.2010.10400687.
[19]
Scinska, A.; Koros, E.; Habrat, B.; Kukwa, A.; Kostowski, W.; Bienkowski, P. Bitter and sweet components of ethanol taste in humans. Drug Alcohol Depend. 2000, 60, 199–206, doi:10.1016/S0376-8716(99)00149-0.
[20]
Yakovenko, V.; Speidel, E.R.; Chapman, C.D.; Dess, N.K. Food dependence in rats selectively bred for low versus high saccharin intake. Implications for “food addiction”. Appetite 2011, 57, 397–400, doi:10.1016/j.appet.2011.06.002.
[21]
Dess, N.K.; O’Neill, P.; Chapman, C.D. Ethanol withdrawal and proclivity are inversely related in rats selectively bred for differential saccharin intake. Alcohol 2005, 37, 9–22, doi:10.1016/j.alcohol.2005.09.006.
[22]
Dess, N.K.; Arnal, J.; Chapman, C.D.; Siebel, S.; VanderWeele, D.A. Exploring adaptations to famine: Rats selectively bred for differential intake of saccharin differ on deprivation-induced hyperactivity and emotionality. Int. J. Comp. Psychol. 2000, 13, 34–52.
[23]
Dess, N.K.; Richard, J.M.; Severe, S.F.; Chapman, C.D. Temporal organization of eating in low- and high-saccharin-consuming rats. Int. J. Comp. Psychol. 2007, 20, 317–340.
[24]
VanderWeele, D.A.; Dess, N.K.; Castonguay, T.W. Ingestional responses to metabolic challenges in rats selectively bred for high and low saccharin intake. Physiol. Behav. 2002, 75, 97–104, doi:10.1016/S0031-9384(01)00641-2.
[25]
Corbit, L.H.; Janak, P.H. Ethanol-associated cues produce general Pavlovian-instrumental transfer. Alcohol. Clin. Exp. Res. 2007, 31, 766–774, doi:10.1111/j.1530-0277.2007.00359.x.
[26]
Binakonsky, J.; Giga, N.; Ross, C.; Siegel, M. Jello shot consumption among older adolescents: A pilot study of a newly identified public health problem. Subst. Use Misuse 2011, 46, 828–835, doi:10.3109/10826084.2010.538886.
[27]
Copeland, J.; Stevenson, R.J.; Gates, P.; Dillon, P. Young Australians and alcohol: The acceptability of ready-to-drink (RTD) alcoholic beverages among 12–30-year-olds. Addiction 2007, 102, 1740–1746, doi:10.1111/j.1360-0443.2007.01970.x.
[28]
Jones, S.C.; Reis, S. Not just the taste: Why adolescents drink alcopops. Health Educ. 2011, 112, 61–74, doi:10.1108/09654281211190263.
[29]
Lanier, S.A.; Hayes, J.E.; Duffy, V.B. Sweet and bitter tastes of alcoholic beverages mediate alcohol intake in of-age undergraduates. Physiol. Behav. 2005, 83, 821–831, doi:10.1016/j.physbeh.2004.10.004.
[30]
Peacock, A.; Bruno, R.; Martin, F.H. Patterns of use and motivations for consuming alcohol mixed with energy drinks. Psychol. Addict. Behav. 2013, 27, 202–206, doi:10.1037/a0029985.
[31]
Peris, J.; Zharikova, A.; Li, Z.; Lingis, M.; MacNeill, M.; Wu, M.T.; Rowland, N.E. Brain ethanol levels in rats after voluntary ethanol consumption using a sweetened gelatin vehicle. Pharmacol. Biochem. Behav. 2006, 85, 562–568, doi:10.1016/j.pbb.2006.10.010.
[32]
Rowland, N.E.; Nasrallah, N.; Robertson, K.L. Accurate caloric compensation in rats for electively consumed ethanol-beer or ethanol-polycose mixtures. Pharmacol. Biochem. Behav. 2005, 80, 109–114.
[33]
Ralevski, E.; Gueorguieva, R.; Limoncelli, D.D.; Husain, R.; Jane, J.S.; Petrakis, I. Gelatin “shots” as a new method for alcohol administration in a laboratory setting. Alcohol. Clin. Exp. Res. 2006, 30, 473–479, doi:10.1111/j.1530-0277.2006.00064.x.
[34]
Ackroff, K.; Sclafani, A. Energy density and macronutrient composition determine flavor preference conditioned by intragastric infusions of mixed diets. Physiol. Behav. 2006, 89, 250–260, doi:10.1016/j.physbeh.2006.06.003.
[35]
Mehiel, R.; Bolles, R.C. Learned flavor preferences based on caloric outcome. Anim. Learn. Behav. 1984, 12, 7–421, doi:10.3758/BF03199808.
[36]
Calvi?o, A.M.; García-Medina, M.R.; Cometto-Mu?iz, J.E.; Rodríguez, M.B. Perception of sweetness and bitterness in different vehicles. Percept. Psychophys. 1993, 54, 751–758, doi:10.3758/BF03211799.
[37]
Dess, N.K. Responses to basic taste qualities in rats selectively bred for high versus low saccharin intake. Physiol. Behav. 2000, 69, 57–247.
[38]
Tordoff, M.G.; Alarcon, L.K.; Lawler, M.P. Preferences of 14 rat strains for 17 taste compounds. Physiol. Behav. 2008, 95, 308–332, doi:10.1016/j.physbeh.2008.06.010.
[39]
Nissenbaum, J.W.; Sclafani, A. Qualitative differences in polysaccharide and sugar tastes in the rat: A two-carbohydrate taste model. Neurosci. Biobehav. Rev. 1987, 11, 187–196, doi:10.1016/S0149-7634(87)80025-8.
[40]
Mehiel, R.; Bolles, R.C. Learned flavor preferences based on calories are independent of initial hedonic value. Anim. Learn. Behav. 1988, 16, 383–387, doi:10.3758/BF03209376.
[41]
Fanselow, M.S.; Birk, J. Flavor–Flavor associations induce hedonic shifts in taste preference. Anim. Learn. Behav. 1982, 10, 223–228, doi:10.3758/BF03212274.
[42]
González, F.; García-Burgos, D.; de Brugada, I.; Gil, M. Learned preference for a hedonically negative flavor is observed after pairings with positive post-ingestion consequences rather than with a palatable flavor. Learn. Motiv. 2010, 41, 141–149, doi:10.1016/j.lmot.2010.01.004.
[43]
Ackroff, K.; Rozental, D.; Sclafani, A. Ethanol-conditioned flavor preferences compared with sugar- and fat-conditioned preferences in rats. Physiol. Behav. 2004, 81, 699–713, doi:10.1016/j.physbeh.2004.03.011.
[44]
Blum, K.; Werner, T.; Carnes, S.; Carnes, P.; Bowirrat, A.; Giordano, J.; Oscar-Berman, M.; Gold, M. Sex, drugs, and rock ‘n’ roll: Hypothesizing common mesolimbic activation as a function of reward gene polymorphisms. J. Psychoact. Drugs. 2012, 44, 38–55.
[45]
Hayes, D.J.; Greenshaw, A.J. 5-HT receptors and reward-related behaviour: A review. Neurosci. Biobehav. Rev. 2011, 35, 1419–1449, doi:10.1016/j.neubiorev.2011.03.005.
[46]
Shoemaker, W.J.; Vavrousek-Jakuba, E.; Arons, C.D.; Kwok, F. The acquisition and maintenance of voluntary ethanol drinking in the rat: Effects of dopaminergic lesions and naloxone. Behav. Brain Res. 2002, 137, 139–148, doi:10.1016/S0166-4328(02)00290-5.
[47]
Touzani, K.; Bodnar, R.J.; Sclafani, A. Neuropharmacology of learned flavor preferences. Pharmacol. Biochem. Behav. 2010, 97, 55–62, doi:10.1016/j.pbb.2010.06.001.
[48]
Booth, D.A. Neurophysiology of Ingestion; Pergamon Press: Elmsford, NY, USA, 1993.
[49]
Frutiger, S.A. Changes in self-stimulation at stimulation-bound eating and drinking sites in the lateral hypothalamus during food or water deprivation, glucoprivation, and intracellular or extracellular dehydration. Behav. Neurosci. 1986, 100, 221–229, doi:10.1037/0735-7044.100.2.221.
[50]
Mattes, R.D. Hunger and thirst: Issues in measurement and prediction of eating and drinking. Physiol. Behav. 2010, 100, 22–32, doi:10.1016/j.physbeh.2009.12.026.
[51]
Galef, B.G. Food selection: Problems in understanding how we choose foods to eat. Neurosci. Biobehav. Rev. 1996, 20, 67–73, doi:10.1016/0149-7634(95)00041-C.
[52]
Galef, B.G.; Sherry, D.F. Mother’s milk: A medium for transmission of cues reflecting the flavor of mother’s diet. J. Comp. Physiol. Psychol. 1973, 83, 374–378, doi:10.1037/h0034665.