全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2014 

Multiple Exciton Generation in Colloidal Nanocrystals

DOI: 10.3390/nano4010019

Keywords: multiple exciton generation, carrier multiplication, nanocrystals, quantum dots, nanoparticles, solar cells, photovoltaic

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a conventional solar cell, the energy of an absorbed photon in excess of the band gap is rapidly lost as heat, and this is one of the main reasons that the theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton generation (MEG), can occur in colloidal quantum dots. Here, some or all of the excess energy is instead used to promote one or more additional electrons to the conduction band, potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This review will describe the development of this field over the decade since the first experimental demonstration of multiple exciton generation, including the controversies over experimental artefacts, comparison with similar effects in bulk materials, and the underlying mechanisms. We will also describe the current state-of-the-art and outline promising directions for further development.

References

[1]  Beard, M.C.; Ellingson, R.J. Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser Photonics Rev. 2008, 2, 377–399, doi:10.1002/lpor.200810013.
[2]  Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519, doi:10.1063/1.1736034.
[3]  Shah, J. Hot-electrons and phonons under high-intensity photo-excitation of semiconductors. Solid State Electron. 1978, 21, 43–50, doi:10.1016/0038-1101(78)90113-2.
[4]  Christensen, O. Quantum efficiency of internal photoelectric effect in silicon and germanium. J. Appl. Phys. 1976, 47, 689–695, doi:10.1063/1.322635.
[5]  Geist, J.; Gardner, J.L.; Wilkinson, F.J. Surface-field-induced feature in the quantum yield of silicon near 3.5 eV. Phys. Rev. B 1990, 42, 1262–1267, doi:10.1103/PhysRevB.42.1262.
[6]  Nozik, A.J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 2001, 52, 193–231, doi:10.1146/annurev.physchem.52.1.193.
[7]  Cho, B.; Peters, W.K.; Hill, R.J.; Courtney, T.L.; Jonas, D.M. Bulklike hot carrier dynamics in lead sulfide quantum dots. Nano Lett. 2010, 10, 2498–2505, doi:10.1021/nl1010349.
[8]  Schaller, R.D.; Klimov, V.I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601:1–186601:4.
[9]  Ji, M.; Park, S.; Connor, S.T.; Mokari, T.; Cui, Y.; Gaffney, K.J. Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation. Nano Lett. 2009, 9, 1217–1222, doi:10.1021/nl900103f.
[10]  Pijpers, J.J.H.; Ulbricht, R.; Tielrooij, K.J.; Osherov, A.; Golan, Y.; Delerue, C.; Allan, G.; Bonn, M. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nat. Phys. 2009, 5, 811–814, doi:10.1038/nphys1393.
[11]  Schaller, R.D.; Sykora, M.; Jeong, S.; Klimov, V.I. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 2006, 110, 25332–25338, doi:10.1021/jp065282p.
[12]  Nair, G.; Bawendi, M.G. Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 2007, 76, 081304:1–081304:4.
[13]  Gachet, D.; Avidan, A.; Pinkas, I.; Oron, D. An upper bound to carrier multiplication efficiency in Type II colloidal quantum dots. Nano Lett. 2010, 10, 164–170, doi:10.1021/nl903172f.
[14]  Nair, G.; Geyer, S.M.; Chang, L.-Y.; Bawendi, M.G. Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 2008, 78, 125325:1–125325:10.
[15]  McGuire, J.A.; Sykora, M.; Joo, J.; Pietryga, J.M.; Klimov, V.I. Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 2010, 10, 2049–2057, doi:10.1021/nl100177c.
[16]  Timmerman, D.; Valenta, J.; Dohnalova, K.; de Boer, W.D.A.M.; Gregorkiewicz, T. Step-like enhancement of luminescence quantum yield of silicon nanocrystals. Nat. Nanotechnol. 2011, 6, 710–713, doi:10.1038/nnano.2011.167.
[17]  Beard, M.C.; Midgett, A.G.; Law, M.; Semonin, O.E.; Ellingson, R.J.; Nozik, A.J. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 2009, 9, 836–845, doi:10.1021/nl803600v.
[18]  Isborn, C.M.; Prezhdo, O.V. Charging quenches multiple exciton generation in semiconductor nanocrystals: First-principles calculations on small PbSe clusters. J. Phys. Chem. C 2009, 113, 12617–12621, doi:10.1021/jp902621a.
[19]  Luther, J.M.; Beard, M.C.; Song, Q.; Law, M.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007, 7, 1779–1784, doi:10.1021/nl0708617.
[20]  Yang, Y.; Rodriguez-Cordoba, W.; Lian, T.Q. Multiple exciton generation and dissociation in PbS quantum dot-electron acceptor complexes. Nano Lett. 2012, 12, 4235–4241, doi:10.1021/nl301847r.
[21]  Ben-Lulu, M.; Mocatta, D.; Bonn, M.; Banin, U.; Ruhman, S. On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots. Nano Lett. 2008, 8, 1207–1211, doi:10.1021/nl080199u.
[22]  Beard, M.C.; Knutsen, K.P.; Yu, P.; Luther, J.M.; Song, Q.; Metzger, W.K.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 2007, 7, 2506–2512, doi:10.1021/nl071486l.
[23]  Al-Otaify, A.; Kershaw, S.V.; Gupta, S.; Rogach, A.L.; Allan, G.; Delerue, C.; Binks, D.J. Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots. Phys. Chem. Chem. Phys. 2013, 15, 16864–16873, doi:10.1039/c3cp52574k.
[24]  Stubbs, S.K.; Hardman, S.J.O.; Graham, D.M.; Spencer, B.F.; Flavell, W.R.; Glarvey, P.; Masala, O.; Pickett, N.L.; Binks, D.J. Efficient carrier multiplication in inp nanoparticles. Phys. Rev. B 2010, 81, 081303:1–081303:4.
[25]  Schaller, R.D.; Pietryga, J.M.; Klimov, V.I. Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett. 2007, 7, 3469–3476, doi:10.1021/nl072046x.
[26]  Binks, D.J. Multiple exciton generation in nanocrystal quantum dots—Controversy, current status and future prospects. Phys. Chem. Chem. Phys. 2011, 13, 12693–12704, doi:10.1039/c1cp20225a.
[27]  McGuire, J.A.; Joo, J.; Pietryga, J.M.; Schaller, R.D.; Klimov, V.I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 2008, 41, 1810–1819, doi:10.1021/ar800112v.
[28]  Hardman, S.J.O.; Graham, D.M.; Stubbs, S.K.; Spencer, B.F.; Seddon, E.A.; Fung, H.T.; Gardonio, S.; Sirotti, F.; Silly, M.G.; Akhtar, J.; et al. Electronic and surface properties of PbS nanoparticles exhibiting efficient multiple exciton generation. Phys. Chem. Chem. Phys. 2011, 13, 20275–20283, doi:10.1039/c1cp22330e.
[29]  Midgett, A.G.; Hillhouse, H.W.; Hughes, B.K.; Nozik, A.J.; Beard, M.C. Flowing versus static conditions for measuring multiple exciton generation in PbSe quantum dots. J. Phys. Chem. C 2010, 114, 17486–17500.
[30]  Tyagi, P.; Kambhampati, P. False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping. J. Chem. Phys. 2011, 134, doi:10.1063/1.3561063.
[31]  Ellingson, R.J.; Beard, M.C.; Johnson, J.C.; Yu, P.R.; Micic, O.I.; Nozik, A.J.; Shabaev, A.; Efros, A.L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871, doi:10.1021/nl0502672.
[32]  Nootz, G.; Padilha, L.A.; Levina, L.; Sukhovatkin, V.; Webster, S.; Brzozowski, L.; Sargent, E.H.; Hagan, D.J.; van Stryland, E.W. Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots. Phys. Rev. B 2011, 83, 155302:1–155302:7.
[33]  Stewart, J.T.; Padilha, L.A.; Qazilbash, M.M.; Pietryga, J.M.; Midgett, A.G.; Luther, J.M.; Beard, M.C.; Nozik, A.J.; Klimov, V.I. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: The role of competing energy-loss processes. Nano Lett. 2012, 12, 622–628, doi:10.1021/nl203367m.
[34]  Midgett, A.G.; Luther, J.M.; Stewart, J.T.; Smith, D.K.; Padilha, L.A.; Klimov, V.I.; Nozik, A.J.; Beard, M.C. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbSxSe1?x alloyed quantum dots. Nano Lett. 2013, 13, 3078–3085, doi:10.1021/nl4009748.
[35]  Murphy, J.E.; Beard, M.C.; Norman, A.G.; Ahrenkiel, S.P.; Johnson, J.C.; Yu, P.R.; Micic, O.I.; Ellingson, R.J.; Nozik, A.J. Pbte colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 2006, 128, 3241–3247, doi:10.1021/ja0574973.
[36]  Trinh, M.T.; Polak, L.; Schins, J.M.; Houtepen, A.J.; Vaxenburg, R.; Maikov, G.I.; Grinbom, G.; Midgett, A.G.; Luther, J.M.; Beard, M.C.; et al. Anomalous independence of multiple exciton generation on different group IV-VI quantum dot architectures. Nano Lett. 2011, 11, 1623–1629, doi:10.1021/nl200014g.
[37]  Schaller, R.D.; Petruska, M.A.; Klimov, V.I. Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 2005, 87, 253102:1–253102:3.
[38]  Kobayashi, Y.; Udagawa, T.; Tamai, N. Carrier multiplication in CdTe quantum dots by single-photon timing spectroscopy. Chem. Lett. 2009, 38, 830–831, doi:10.1246/cl.2009.830.
[39]  Califano, M. Photoinduced surface trapping and the observed carrier multiplication yields in static CdSe nanocrystal samples. ACS Nano 2011, 5, 3614–3621, doi:10.1021/nn200723g.
[40]  Pijpers, J.J.H.; Hendry, E.; Milder, M.T.W.; Fanciulli, R.; Savolainen, J.; Herek, J.L.; Vanmaekelbergh, D.; Ruhman, S.; Mocatta, D.; Oron, D.; et al. Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots. J. Phys. Chem. C 2007, 111, 4146–4152, doi:10.1021/jp066709v.
[41]  Pijpers, J.J.H.; Hendry, E.; Milder, M.T.W.; Fanciulli, R.; Savolainen, J.; Herek, J.L.; Vanmaekelbergh, D.; Ruhman, S.; Mocatta, D.; Oron, D.; et al. Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots(vol 111, pg 4146, 2007). J. Phys. Chem. C 2008, 112, 4783–4784, doi:10.1021/jp800834h.
[42]  Califano, M. Direct and inverse auger processes in InAs nanocrystals: Can the decay signature of a trion be mistaken for carrier multiplication? ACS Nano 2009, 3, 2706–2714, doi:10.1021/nn900461f.
[43]  Cadirci, M.; Stubbs, S.K.; Hardman, S.J.O.; Masala, O.; Allan, G.; Delerue, C.; Pickett, N.; Binks, D.J. Ultrafast exciton dynamics in InAs/ZnSe nanocrystal quantum dots. Phys. Chem. Chem. Phys. 2012, 14, 15166–15172, doi:10.1039/c2cp42125a.
[44]  Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544, doi:10.1126/science.1104274.
[45]  Trinh, M.T.; Limpens, R.; de Boer, W.D.A.M.; Schins, J.M.; Siebbeles, L.D.A.; Gregorkiewicz, T. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nat. Photonics 2012, 6, 316–321, doi:10.1038/nphoton.2012.36.
[46]  Allan, G.; Delerue, C. Optimization of carrier multiplication for more effcient solar cells: The case of Sn quantum dots. ACS Nano 2011, 5, 7318–7323, doi:10.1021/nn202180u.
[47]  Sykora, M.; Koposov, A.Y.; McGuire, J.A.; Schulze, R.K.; Tretiak, O.; Pietryga, J.M.; Klimov, V.I. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 2010, 4, 2021–2034, doi:10.1021/nn100131w.
[48]  Bartnik, A.C.; Efros, A.L.; Koh, W.K.; Murray, C.B.; Wise, F.W. Electronic states and optical properties of PbSe nanorods and nanowires. Phys. Rev. B 2010, 82, 195313:1–195313:16.
[49]  Padilha, L.A.; Stewart, J.T.; Sandberg, R.L.; Bae, W.K.; Koh, W.K.; Pietryga, J.M.; Klimov, V.I. Aspect ratio dependence of auger recombination and carrier multiplication in PbSe nanorods. Nano Lett. 2013, 13, 1092–1099, doi:10.1021/nl304426y.
[50]  Cunningham, P.D.; Boercker, J.E.; Foos, E.E.; Lumb, M.P.; Smith, A.R.; Tischler, J.G.; Melinger, J.S. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 2011, 11, 3476–3481, doi:10.1021/nl202014a.
[51]  Cunningham, P.D.; Boercker, J.E.; Foos, E.E.; Lumb, M.P.; Smith, A.R.; Tischler, J.G.; Melinger, J.S. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors(vol 11, pg 3476, 2011). Nano Lett. 2013, 13, 3003–3003, doi:10.1021/nl401525k.
[52]  Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H.W.; Law, M. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 2010, 10, 1960–1969, doi:10.1021/nl101284k.
[53]  Gao, Y.N.; Aerts, M.; Sandeep, C.S.S.; Talgorn, E.; Savenije, T.J.; Kinge, S.; Siebbeles, L.D.A.; Houtepen, A.J. Photoconductivity of PbSe quantum-dot solids: Dependence on ligand anchor group and length. ACS Nano 2012, 6, 9606–9614, doi:10.1021/nn3029716.
[54]  Tagliazucchi, M.; Tice, D.B.; Sweeney, C.M.; Morris-Cohen, A.J.; Weiss, E.A. Ligand-controlledrates of photoinduced electron transfer in hybrid CdSe nanocrystal/poly(viologen) films. ACS Nano 2011, 5, 9907–9917, doi:10.1021/nn203683s.
[55]  Wehrenberg, B.L.; Guyot-Sionnest, P. Electron and hole injection in PbSe quantum dot films. J. Am. Chem. Soc. 2003, 125, 7806–7807, doi:10.1021/ja035369d.
[56]  Ten Cate, S.; Liu, Y.; Sandeep, C.S.S.; Kinge, S.; Houtepen, A.J.; Savenije, T.J.; Schins, J.M.; Law, M.; Siebbeles, L.D.A. Activating carrier multiplication in PbSe quantum dot solids by infilling with atomic layer deposition. J. Phys. Chem. Lett. 2013, 4, 1766–1770, doi:10.1021/jz4007492.
[57]  Ten Cate, S.; Liu, Y.; Schins, J.M.; Law, M.; Siebbeles, L.D.A. Phonons do not assist carrier multiplication in PbSe quantum dot solids. J. Phys. Chem. Lett. 2013, 4, 3257–3262, doi:10.1021/jz401780w.
[58]  Sandeep, C.S.S.; Ten Cate, S.; Schins, J.M.; Savenije, T.J.; Liu, Y.; Law, M.; Kinge, S.; Houtepen, A.J.; Siebbeles, L.D.A. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films. Nat. Commun. 2013, 4, 2360.
[59]  Beard, M.C.; Midgett, A.G.; Hanna, M.C.; Luther, J.M.; Hughes, B.K.; Nozik, A.J. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: Implications for enhancement of solar energy conversion. Nano Lett. 2010, 10, 3019–3027, doi:10.1021/nl101490z.
[60]  Ridley, B.K. Quantum Processes in Semiconductors, 2nd ed. ed.; Clarendon Press/Oxford University Press: Oxford, UK; New York, NY, USA, 1988.
[61]  Allan, G.; Delerue, C. Role of impact ionization in multiple exciton generation in PbSe nanocrystals. Phys. Rev. B 2006, 73, 205423:1–205423:5.
[62]  Schaller, R.D.; Agranovich, V.M.; Klimov, V.I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat. Phys. 2005, 1, 189–194, doi:10.1038/nphys151.
[63]  Rupasov, V.I.; Klimov, V.I. Carrier multiplication in semiconductor nanocrystals via intraband optical transitions involving virtual biexciton states. Phys. Rev. B 2007, 76, 125321:1–125321:6.
[64]  Silvestri, L.; Agranovich, V.M. Direct photogeneration of biexcitons via virtual single-exciton and biexciton states in PbSe quantum dots. Phys. Rev. B 2010, 81, doi:10.1103/PhysRevB.81.205302.
[65]  Velizhanin, K.A.; Piryatinski, A. Numerical analysis of carrier multiplication mechanisms in nanocrystalline and bulk forms of PbSe and PbS. Phys. Rev. B 2012, 86, 165319:1–165319:19.
[66]  Shabaev, A.; Efros, A.L.; Nozik, A.J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 2006, 6, 2856–2863.
[67]  Jaeger, H.M.; Hyeon-Deuk, K.; Prezhdo, O.V. Exciton multiplication from first principles. Acc. Chem. Res. 2013, 46, 1280–1289, doi:10.1021/ar3002365.
[68]  Velizhanin, K.A.; Piryatinski, A. Numerical study of carrier multiplication pathways in photoexcited nanocrystal and bulk forms of PbSe. Phys. Rev. Lett. 2011, 106, 207401:1–207401:4.
[69]  Franceschetti, A.; An, J.M.; Zunger, A. Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Lett. 2006, 6, 2191–2195, doi:10.1021/nl0612401.
[70]  Rabani, E.; Baer, R. Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Lett. 2008, 8, 4488–4492, doi:10.1021/nl802443c.
[71]  Delerue, C.; Allan, G.; Pijpers, J.J.H.; Bonn, M. Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells. Phys. Rev. B 2010, 81, 125306:1–125306:6.
[72]  Allan, G.; Delerue, C. Influence of electronic structure and multiexciton spectral density on multiple-exciton generation in semiconductor nanocrystals: Tight-binding calculations. Phys. Rev. B 2008, 77, doi:10.1103/PhysRevB.77.125340.
[73]  Hanna, M.C.; Nozik, A.J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510:1–074510:8.
[74]  Klimov, V.I. Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl. Phys. Lett. 2006, 89, doi:10.1063/1.2356314.
[75]  Takeda, Y.; Motohiro, T. Requisites to realize high conversion efficiency of solar cells utilizing carrier multiplication. Sol. Energy Mater. Sol. Cells 2010, 94, 1399–1405, doi:10.1016/j.solmat.2010.04.051.
[76]  Tisdale, W.A.; Williams, K.J.; Timp, B.A.; Norris, D.J.; Aydil, E.S.; Zhu, X.Y. Hot-electron transfer from semiconductor nanocrystals. Science 2010, 328, 1543–1547, doi:10.1126/science.1185509.
[77]  Sambur, J.B.; Novet, T.; Parkinson, B.A. Multiple exciton collection in a sensitized photovoltaic system. Science 2010, 330, 63–66.
[78]  Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H.-Y.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011, 334, 1530–1533, doi:10.1126/science.1209845.
[79]  Kambhampati, P. Hot exciton relaxation dynamics in semiconductor quantum dots: Radiationless transitions on the nanoscale. J. Phys. Chem. C 2011, 115, 22089–22109, doi:10.1021/jp2058673.
[80]  Klimov, V.I.; McBranch, D.W.; Leatherdale, C.A.; Bawendi, M.G. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 1999, 60, 13740–13749, doi:10.1103/PhysRevB.60.13740.
[81]  Pandey, A.; Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 2008, 322, 929–932, doi:10.1126/science.1159832.
[82]  McElroy, N.; Cadirci, M.; Al-Otaify, A.; Page, R.; Binks, D.J. Quantum Dot Solar Cells; Springer: New York, NY, USA, 2014.
[83]  Klimov, V.I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673, doi:10.1146/annurev.physchem.58.032806.104537.
[84]  Piryatinski, A.; Ivanov, S.A.; Tretiak, S.; Klimov, V.I. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in Type II core/shell semiconductor nanocrystals. Nano Lett. 2007, 7, 108–115, doi:10.1021/nl0622404.
[85]  Deutsch, Z.; Avidan, A.; Pinkas, I.; Oron, D. Energetics and dynamics of exciton-exciton interactions in compound colloidal semiconductor quantum dots. Phys. Chem. Chem. Phys. 2011, 13, 3210–3219, doi:10.1039/c0cp02253e.
[86]  Sitt, A.; Della Sala, F.; Menagen, G.; Banin, U. Multiexciton engineering in seeded core/shell nanorods: Transfer from Type-I to quasi-Type-II regimes. Nano Lett. 2009, 9, 3470–3476, doi:10.1021/nl901679q.
[87]  Avidan, A.; Deutsch, Z.; Oron, D. Interactions of bound excitons in doped core/shell quantum dot heterostructures. Phys. Rev. B 2012, 82, 165332:1–165332:6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133