This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.
References
[1]
Bard, A.J.; Mirkin, M.V. Scanning Electrochemical Microscopy; Marcel Dekker: New York, NY, USA, 2001.
[2]
Mirkin, M.V.; Horrocks, B.R. Electroanalytical measurements using the scanning electrochemical microscope. Anal. Chim. Acta 2000, 406, 119–146, doi:10.1016/S0003-2670(99)00630-3.
[3]
Jones, C.E.; Macpherson, J.V.; Barber, Z.H.; Somekh, R.E.; Unwin, P.R. Simultaneous topographical and amperometric imaging of surfaces in air: Towards a combined scanning force-scanning electrochemical microscope (SF-SECM). Electrochem. Commun. 1999, 1, 55–60.
[4]
Kranz, C.; Kueng, A.; Lugstein, A.; Bertagnolli, E.; Mizaikoff, B. Mapping of enzyme activity by detection of enzymatic products during AFM imaging with integrated SECM-AFM probes. Ultramicroscopy 2004, 100, 127–134, doi:10.1016/j.ultramic.2003.10.004.
[5]
Macpherson, J.V.; Unwin, P.R. Noncontact electrochemical imaging with combined scanning electrochemical atomic force microscopy. Anal. Chem. 2001, 73, 550–557, doi:10.1021/ac001072b.
[6]
Gardner, C.E.; Macpherson, J.V. Peer reviewed: Atomic force microscopy probes go electrochemical. Anal. Chem. 2002, 74, 576A–584A.
[7]
Lugstein, A.; Bertagnolli, E.; Kranz, C.; Kueng, A.; Mizaikoff, B. Integrating micro- and nano-electrodes into atomic force microscopy cantilevers using focused ion beam techniques. Appl. Phys. Lett. 2002, 81, 349–351, doi:10.1063/1.1492304.
[8]
Kranz, C.; Friedbacher, G.; Mizaikoff, B.; Lugstein, A.; Bertagnolli, E. Integrating an ultramicroelectrode in an AFM cantilever: Combined technology for enhanced information. Anal. Chem. 2001, 73, 2491–2500, doi:10.1021/ac001099v.
Grieshaber, D.; MacKenzie, R.; V?r?s, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458, doi:10.3390/s8031400.
[11]
Lugstein, A.; Bertagnolli, E.; Kranz, C.; Mizaikoff, B. Fabrication of a ring nanoelectrode in an AFM tip: Novel approach towards simultaneous electrochemical and topographical imaging. Surf. Interface Anal. 2002, 33, 146–150, doi:10.1002/sia.1178.
[12]
Sekine, S.; Kaji, H.; Nishizawa, M. Integration of an electrochemical-based biolithography technique into an AFM system. Anal. Bioanal. Chem. 2008, 391, 2711–2716, doi:10.1007/s00216-008-1952-9.
[13]
Kueng, A.; Kranz, C.; Lugstein, A.; Bertagnolli, E.; Mizaikoff, B. Integrated AFM-SECM in tapping mode: Simultaneous topographical and electrochemical imaging of enzyme activity. Angew. Chem. Int. Ed. 2003, 42, 3238–3240, doi:10.1002/anie.200351111.
[14]
Ghorbal, A.; Grisotto, F.; Charlier, J.; Palacin, S.; Goyer, C.; Demaille, C. Localized electrografting of vinylic monomers on a conducting substrate by means of an integrated electrochemical AFM probe. Chem. Phys. Chem. 2009, 10, 1053–1057, doi:10.1002/cphc.200800803.
[15]
Ghorbal, A.; Grisotto, F.; Laudé, M.; Charlier, J.; Palacin, S. The in situ characterization and structuring of electrografted polyphenylene films on silicon surfaces. An AFM and XPS study. J. Colloid. Interface Sci. 2008, 328, 308–313, doi:10.1016/j.jcis.2008.09.033.
[16]
Burrell, M.C.; Codela, P.J.; Fontana, J.A.; Chera, J.J.; McConnell, M.D. Interfacial reactions at copper surfaces coated with polyimide films prepared from poly(amide-acid) precursors. J. Vac. Sci. Technol. A 1989, 7, 55–58.
[17]
Viel, P.; Dubois, L.; Lyskawa, J.; Sallé, M.; Palacin, S. New concept to remove heavy metals from liquid waste based on electrochemical pH-switchable immobilized ligands. Appl. Surf. Sci. 2007, 253, 3263–3269, doi:10.1016/j.apsusc.2006.07.022.
Tourillon, G.; Garrett, R.; Lazarz, N.; Raynaud, M.; Reynaud, C.; Lecayon, G.; Viel, P. A NEXAFS study of thin polyacrylonitrile films electrochemically deposited on Ni: The effect of the film thickness and annealing treatment. J. Electrochem. Soc. 1990, 137, 2499–2501, doi:10.1149/1.2086975.
[20]
Deniau, G.; Azoulay, L.; Jegou, P.; le Chevallier, G.; Palacin, S. Carbon-to-metal bonds: Electrochemical reduction of 2-butenenitrile. Surf. Sci. 2006, 600, 675–684, doi:10.1016/j.susc.2005.11.021.
[21]
Zhang, X.; Bell, J.P. Studies of arenediazonium salts as a new class of electropolymerization initiator. J. App. Polym. Sci. 1999, 73, 2265–2272, doi:10.1002/(SICI)1097-4628(19990912)73:11<2265::AID-APP24>3.0.CO;2-J.
Hazra, A.; Sen, P.; Basumallick, I.N. Modified hydrogel—An unique material for electrochemical studies. J. New Mater. Electrochem. Syst. 2001, 4, 89–92.
[24]
Kaneko, M.; Mochizuki, N.; Suzuki, K.; Shiroishi, H.; Ishikawa, K. Molecular reactor for solution chemistry. Chem. Lett. 2002, 31, 530–531.
[25]
Suzuki, K.; Shiroishi, H.; Hoshino, M.; Kaneko, M. New quasi-solid materials as a medium for photochemical reactions. J. Phys. Chem. A 2003, 107, 5523–5527, doi:10.1021/jp034099i.
[26]
Mouanda, B.; Eyeffa, V.; Palacin, S. Agarose-based hydrogel as an electrografting cell. J Appl Electrochem. 2009, 39, 313–320, doi:10.1007/s10800-008-9675-3.
[27]
Demaille, C. Gold Spherical Microelectrodes. In Handbook of Electrochemistry, 1st; Cynthia, G.Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2007. Chapter 6; pp. 226–235.
[28]
Abbou, J.; Demaille, C.; Dret, M.; Moiroux, J. Fabrication of submicrometer-sized gold electrodes of controlled geometry for scanning electrochemical-atomic force microscopy. Anal. Chem. 2002, 74, 6355–6363, doi:10.1021/ac020385z.
[29]
Sader, J.E. Susceptibility of atomic force microscope cantilevers to lateral forces. Rev. Sci. Instrum. 2003, 74, 2438–2443, doi:10.1063/1.1544421.
[30]
Haugstad, G.; Gladfelter, W.L. Force-displacement measurements in a beam-reflection scanning force microscope: Calibration issues. Ultramicroscopy 1994, 54, 31–40, doi:10.1016/0304-3991(94)90090-6.
[31]
Kueng, A.; Kranz, C.; Mizaikoff, B.; Lugstein, A.; Bertagnolli, E. Combined scanning electrochemical atomic force microscopy for tapping mode imaging. Appl. Phys. Lett. 2003, 82, 1592–1594, doi:10.1063/1.1559652.
[32]
Rodríguez-López, J.; Ritzert, N.L.; Mann, J.A.; Tan, C.; Dichtel, W.R.; Abru?a, H.D. Quantificationof the surface diffusion of tripodal binding motifs on graphene using scanning electrochemical microscopy. J. Am. Chem. Soc. 2012, 134, 6224–6236.
[33]
Grisotto, F.; Ghorbal, A.; Goyer, C.; Charlier, J.; Palacin, S. Direct SECM localized electrografting of vinylic monomers on conducting substrate. Chem. Mater. 2011, 23, 1396–1405, doi:10.1021/cm101563n.
[34]
Charlier, J.; Grisotto, F.; Ghorbal, A.; Goyer, C.; Palacin, S. Localized electrografting of diazonium salts in the SECM environment. Mater. Sci. Forum 2013, 730–732, 221–226.
[35]
Borgwarth, K.; Heinze, J. Increasing the resolution of the scanning electrochemical microscope using a chemical lens: Application to silver deposition. J. Electrochem. Soc. 1999, 146, 3285–3289, doi:10.1149/1.1392468.
[36]
Tessier, L.; Chancolon, J.; Alet, P.-J.; Trenggono, A.; Mayne-L’Hermite, M.; Deniau, G.; Jegou, P.; Palacin, S. Grafting organic polymer films on surfaces of carbon nanotubes by surface electroinitiated emulsion polymerization. Phys. Status Solidi A 2008, 205, 1412–1418, doi:10.1002/pssa.200778159.
[37]
Xie, Y.; Osteryoung, J.G. The coupling of diffusion, migration and chemical equilibrium during the voltammetric reduction of weak polyprotic acids. J. Electroanal. Chem. 1997, 439, 163–171, doi:10.1016/S0022-0728(97)00381-1.
[38]
Ciszkowska, M.; Stojek, Z.; Morris, S.E.; Osteryoung, J.G. Steady-state voltammetry of strong and weak acids with and without supporting electrolyte. Anal. Chem. 1992, 64, 2372–2377, doi:10.1021/ac00044a013.