The strong affinity of carbon nanotubes (CNTs) to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength) and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB) from multi-walled carbon nanotubes (MWNTs). The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH < 7 vs. pH > 7). In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs.
References
[1]
Lu, C.; Su, F. Adsorption of natural organic matter by carbon nanotubes. Sep. Pur. Tech. 2007, 58, 113–121, doi:10.1016/j.seppur.2007.07.036.
[2]
Hilding, J.; Grulke, E.A.; Sinnott, S.B.; Qian, D.; Andrews, R.; Jagtoyen, M. Sorption of butane on carbon multiwall nanotubes at room temperature. Langmuir 2001, 17, 7540–7544, doi:10.1021/la010131t.
[3]
Liao, Q.; Sun, J.L.; Gao, L. Adsorption of chlorophenols by multi-walled carbon nanotubes treated with HNO3 and NH3. Carbon 2008, 46, 553–555, doi:10.1016/j.carbon.2007.12.009.
[4]
Gotovac, S.; Song, L.; Kanoh, H.; Kaneko, K. Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloids Surf. A 2007, 300, 117–121, doi:10.1016/j.colsurfa.2006.10.035.
[5]
Peng, X.; Li, Y.; Luan, Z.; Di, Z.; Wang, H.; Tian, B.; Jia, Z. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 2003, 376, 154–158, doi:10.1016/S0009-2614(03)00960-6.
[6]
Cho, H.H.; Smith, B.A.; Wnuk, J.D.; Fairbrother, D.H.; Ball, W.P. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environ. Sci. Technol. 2008, 42, 2899–2905, doi:10.1021/es702363e.
[7]
Rochefort, A.; Wuest, J.D. Interaction of substituted aromatics compounds with graphene. Langmuir 2009, 25, 210–215, doi:10.1021/la802284j.
[8]
Zhang, S.; Shado, T.; Bekaroglu, S.S.; Karanfil, T. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environ. Sci. Technol. 2009, 43, 5719–5725, doi:10.1021/es900453e.
[9]
Gotovac, S.; Yang, C.M.; Hattori, Y.; Takahashi, K.; Kanoh, H.; Kaneko, K. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. J. Colloid Interface Sci. 2007, 314, 18–24, doi:10.1016/j.jcis.2007.04.080.
[10]
Chen, J.; Wei, C.; Zhu, D. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: Effects of aqueous solution chemistry. Environ. Sci. Technol. 2008, 42, 7225–7230, doi:10.1021/es801412j.
[11]
Yang, Y.; Sheng, G. Pesticide adsorptivity of aged particulate matter arising from crop residue burns. J. Agric. Food Chem. 2003, 51, 5047–5051, doi:10.1021/jf0345301.
[12]
Yang, Y.; Chun, Y.; Sheng, G.; Huang, M. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir 2004, 20, 6736–6741, doi:10.1021/la049363t.
[13]
Bautista-Toledo, I.; Ferro-García, M.A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernández, F.J. Bisphenol A removal from water by activated carbon: Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol. 2005, 39, 6246–6250, doi:10.1021/es0481169.
[14]
Chen, J.; Zhu, D.; Sun, C. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol. 2007, 41, 2536–2541, doi:10.1021/es062113+.
[15]
Su, F.S.; Lu, C.S. Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J. Environ. Sci. Health A 2007, 42, 1543–1552, doi:10.1080/10934520701513381.
[16]
Hyung, H.; Fortner, J.D.; Hughes, J.B.; Kim, J.H. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 2007, 41, 179–184, doi:10.1021/es061817g.
[17]
Lin, D.H.; Xing, B.S. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 2008, 42, 7254–7259, doi:10.1021/es801297u.
[18]
Lin, D.H.; Xing, B.S. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ. Sci. Technol. 2008, 42, 5917–5923, doi:10.1021/es800329c.
[19]
Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J.H.; Balzano, L.; Resasco, D.E. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357–13367, doi:10.1021/jp0365099.
[20]
Zhang, X.; Kah, M.; Jonker, M.T.; Hofmann, T. Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes. Environ. Sci. Technol. 2012, 46, 7166–7173, doi:10.1021/es300645m.
[21]
Lin, D.; Li, T.; Yang, K.; Wu, F. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: Effects of HA, MWNT and solution properties. J. Hazard. Mater. 2012, 241–242, 404–410, doi:10.1016/j.jhazmat.2012.09.060.
[22]
Yang, K.; Xing, B. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut. 2007, 145, 529–537, doi:10.1016/j.envpol.2006.04.020.
[23]
Pan, B.; Lin, D.; Mashayekhi, H.; Xing, B. Adsorption and desorption of Bisphenol A and 17-ethinyl estradiol on carbon nanomaterials. Environ. Sci. Technol. 2008, 42, 5480–5485, doi:10.1021/es8001184.
[24]
Oleszczuk, P.; Pan, B.; Xing, B. Adsorption and desorption of oxygetracycline and carbamazepine by multiwalled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 9167–9173, doi:10.1021/es901928q.
[25]
Wang, Z.; Yu, X.; Pan, B.; Xing, B. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ. Sci. Technol. 2010, 44, 978–984, doi:10.1021/es902775u.
[26]
Ma, X.; Anand, D.; Zhang, X.; Talapatra, S. Adsorption and desorption of chlorinated compounds from pristine and thermally treated multiwalled carbon nanotubes. J. Phys. Chem. 2011, 115, 4552–4557.
[27]
Yang, K.; Zhu, L.; Xing, B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 2006, 40, 1855–1861, doi:10.1021/es052208w.
Zhang, S.; Shao, T.; Bekaroglu, S.S.; Karanfil, T. Adsorption of synthetic organic chemicals by carbon nanotubes—Effects of background solution chemistry. Water Res. 2010, 44, 2067–2074, doi:10.1016/j.watres.2009.12.017.
[30]
Girifalco, L.A.; Hodak, M.; Lee, R.S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. 2000, 62, 13104–13110, doi:10.1103/PhysRevB.62.13104.
[31]
Briandet, R.; Meylheuc, T.; Maher, C.; Bellon-Fontaine, M.N. Listeria monocytogenes scott a: Cell surface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth conditions. Appl. Environ. Microbiol. 1999, 65, 5328–5333.
[32]
Upadhyayula, V.K.K.; Deng, S.; Mitchell, M.C.; Smith, G.B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 2009, 408, 1–13.
[33]
Ji, L.; Chen, W.; Bi, J.; Zheng, S.; Xu, Z.; Zhu, D.; Alvarez, P.J. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxcol. Chem. 2010, 29, 2713–2719, doi:10.1002/etc.350.
[34]
Wang, S.J.; Liu, X.W.; Gong, W.X.; Nie, W.; Gao, B.Y.; Yue, Q.Y. Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. J. Chem. Technol. Biotechnol. 2007, 82, 698–704.
[35]
Chen, G.; Shan, X.; Wang, Y.; Pei, Z.; Shen, X.; Wen, B.; Owens, G. Effect of copper, lead and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes. Environ. Sci. Technol. 2008, 42, 8297–8302, doi:10.1021/es801376w.
[36]
Hyung, H.; Kim, J.H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42, 4416–4421, doi:10.1021/es702916h.
[37]
Wang, S.; Zhao, P.; Min, G.; Fang, G. Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography-mass spectrometry. J. Chromatogr. 2007, 1165, 166–171, doi:10.1016/j.chroma.2007.07.061.
[38]
Liao, Q.; Sun, J.; Gao, L. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf. A 2008, 312, 160–165, doi:10.1016/j.colsurfa.2007.06.045.
[39]
Dubinin, M.M. Chemistry and Physics of Carbon; Marcel Dekker: New York, NY, USA, 1966.
[40]
Arafat, H.A.; Franz, M.; Pinto, N.G. Effect of salt on the mechanism of adsorption of aromatics on activated carbon. Langmuir 1999, 15, 5997–6003, doi:10.1021/la9813331.
[41]
Carrillo-Carrión, C.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Surfactant-coated carbon nanotubes as pseudophases in liquid-liquid extraction. Analyst 2007, 132, 551–559.
[42]
Wang, X.L.; Lu, J.L.; Xing, B.S. Sorption of organic contaminants by carbon nanotubes: Influence of adsorbed organic matter. Environ. Sci. Technol. 2008, 42, 3207–3212, doi:10.1021/es702971g.