Some of the most important advances in the life sciences have come from transitioning to thinking of materials and their properties on the nanoscale rather than the macro or even microscale. Improvements in imaging technology have allowed us to see nanofeatures that directly impact chemical and mechanical properties of natural and man-made materials. Now that these can be imaged and quantified, substantial advances have been made in the fields of biomimetics, tissue engineering, and drug delivery. For the first time, scientists can determine the importance of nanograins and nanoasperities in nacre, direct the nucleation of apatite and the growth of cells on nanostructured scaffolds, and pass drugs tethered to nanoparticles through the blood-brain barrier. This review examines some of the most interesting materials whose nanostructure and hierarchical organization have been shown to correlate directly with favorable properties and their resulting applications.
References
[1]
Yao, N.; Epstein, A.; Akey, A. Crystal growth via spiral motion in abalone shell nacre. J. Mater. Res. 2006, 21, 1939–1946, doi:10.1557/jmr.2006.0252.
[2]
Yao, N.; Epstein, A.; Liu, W.; Sauer, F.; Yang, N. Organic-inorganic interfaces and spiral growth in nacre. J. R. Soc. Interface 2009, 6, 367–376, doi:10.1098/rsif.2008.0316.
[3]
Sumitomo, T.; Kakisawa, H.; Owaki, Y.; Kagawa, Y. Transmission electron microscopy observation of nanoscale deformation structures in nacre. J. Mater. Res. 2012, 23, 3213–3221.
[4]
Lopez, M.; Chen, P.; McKittrick, J.; Meyers, M. Reprint of growth of nacre in abalone: Seasonal and feeding effects. Mater. Sci. Eng. C 2011, 31, 716–723, doi:10.1016/j.msec.2011.01.009.
[5]
Wang, R.; Evans, A.; Suo, Z.; Yao, N.; Aksay, I. Deformation mechanisms in nacre. J. Mater. Res. 2001, 16, 2485–2493, doi:10.1557/JMR.2001.0340.
[6]
Lin, A.l.; Meyers, M. Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2009, 2, 607–612, doi:10.1016/j.jmbbm.2009.04.003.
[7]
Bezares, J.; Asaro, R.; Hawley, M. Macromolecular structure of the organic framework of nacre in Haliotis rufescens: Implications for mechanical response. J. Struct. Biol. 2010, 170, 484–500, doi:10.1016/j.jsb.2010.01.006.
[8]
Sumitomo, T.; Kakisawa, H.; Owaki, Y.; Kagawa, Y. In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix. J. Mater. Res. 2008, 23, 1466–1471, doi:10.1557/JMR.2008.0184.
[9]
Luz, G.; Mano, J. Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos. Trans. R. Soc. A 2009, 367, 1587–1605, doi:10.1098/rsta.2009.0007.
[10]
Meyers, M.; Lim, C.; Li, A.; Hairul Nizam, B.; Tan, E.; Seki, Y.; McKittrick, J. The role of organic intertile layer in abalone nacre. Mater. Sci. Eng. C 2009, 29, 2398–2410, doi:10.1016/j.msec.2009.07.005.
[11]
Heinemann, F.; Launspach, M.; Gries, K.; Fritz, M. Gastropod nacre: Structure, properties and growth—Biological, chemical and physical basics. Biophys. Chem. 2011, 153, 126–153, doi:10.1016/j.bpc.2010.11.003.
[12]
Wise, S.; DeVilliers, J. Scanning electron microscopy of molluscan shell ultrastructures: Screw dislocations in pelecypod nacre. Trans. Am. Micros. Soc. 1971, 90, 376–380, doi:10.2307/3225200.
[13]
Dutta, A.; Tekalur, S.; Miklavcic, M. Optimal overlap length in staggered architecture composites under dynamic loading conditions. J. Mech. Phys. Solids 2013, 61, 145–160, doi:10.1016/j.jmps.2012.08.005.
[14]
Katti, K.; Katti, D. Why is nacre so tough and strong? Mater. Sci. Eng. C 2006, 26, 1317–1324, doi:10.1016/j.msec.2005.08.013.
[15]
Katti, K.; Mohanty, B.; Katti, D. Nanomechanical properties of nacre. J. Mater. Res. 2006, 21, 1237–1242, doi:10.1557/jmr.2006.0147.
[16]
Song, F.; Soh, A.; Bai, Y. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003, 25, 3623–3631, doi:10.1016/S0142-9612(03)00215-1.
[17]
Checa, A.; Cartwright, J.; Willinger, M. Mineral bridges in nacre. J. Struct. Biol. 2011, 176, 330–339, doi:10.1016/j.jsb.2011.09.011.
[18]
Tang, H.; Barthelat, F.; Espinosa, H. An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre. J. Mech. Phys. Solids 2007, 55, 1410–1438, doi:10.1016/j.jmps.2006.12.009.
[19]
Barthelat, F.; Zhu, D. A novel biomimetic material duplicating the structure and mechanics of natural nacre. J. Mater. Res. Soc. 2011, 26, 1203–1215, doi:10.1557/jmr.2011.65.
[20]
Zhang, N.; Chen, Y. Molecular origin of the sawtooth behavior and the toughness of nacre. Mater. Sci. Eng. C 2012, 32, 1542–1547.
[21]
Barthelet, F. Biomimetics for next generation materials. Philos. Trans. R. Soc. A 2007, 365, 2907–2919, doi:10.1098/rsta.2007.0006.
[22]
Weiner, S.; Wagner, H. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298, doi:10.1146/annurev.matsci.28.1.271.
[23]
Weinkamer, R.; Fratzl, P. Mechanical adaptation of biological materials—The examples of bone and wood. Mater. Sci. Eng. C 2011, 31, 1164–1173, doi:10.1016/j.msec.2010.12.002.
[24]
Dubey, D.; Tomar, V. Role of molecular level interfacial forces in hard biomaterial mechanics: A review. Ann. Biomed. Eng. 2010, 38, 2040–2055, doi:10.1007/s10439-010-9988-3.
[25]
Zhang, D.; Chippada, U.; Jordan, K. Effect of the structural water on the mechanical properties of collagen-like microfibrils: A molecular dynamics study. Ann. Biomed. Eng. 2007, 35, 1216–1230, doi:10.1007/s10439-007-9296-8.
[26]
Dubey, D.; Tomar, V. Understanding the influence of structural hierarchy and its coupling with chemical environment on the strength of idealized tropocollagen-hydroxyapatite biomaterials. J. Mech. Phys. Solids 2009, 57, 1702–1717, doi:10.1016/j.jmps.2009.07.002.
[27]
Bar-On, B.; Wagner, D. Mechanical model for staggered bio-structure. J. Mech. Phys. Solids 2011, 59, 1685–1701, doi:10.1016/j.jmps.2011.06.005.
[28]
Begley, M.; Philips, N.; Compton, B.; Wilbrink, D.; Ritchie, R.; Utz, M. Micromechanical models to guide the development of synthetic “brick and mortar” composites. J. Mech. Phys. Solids 2012, 60, 1545–1560, doi:10.1016/j.jmps.2012.03.002.
[29]
Dubey, D.; Tomar, V. The effect of tensile and compressive loading on the hieracrchical strength of idealized tropocollagen-hydroxyapatite biomaterials as a function of the chemical environment. J. Phys. Condens. Matter 2009, 21, 1–13.
[30]
Boccaccini, A.; Erol, M.; Stark, W.; Mohn, D.; Hong, Z.; Mano, J. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol. 2010, 70, 1764–1776, doi:10.1016/j.compscitech.2010.06.002.
[31]
Wu, Y.; Hench, L.L. Preparation of hydroxyapatite fibers by electrospinning technique. J. Am. Ceram. Soc. 2004, 87, 1988–1991.
[32]
Couto, D.; Hong, Z.; Mano, J. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater. 2009, 5, 115–123.
[33]
Liu, A.; Hong, Z.; Zhuang, X.; Chen, X.; Cui, Y.; Liu, Y.; Jing, X. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Acta Biomater. 2008, 4, 1005–1015.
[34]
Shi, J.; Alves, N.; Mano, J. Thermally responsive biomineralization on biodegradable substrates. Adv. Funct. Mater. 2007, 17, 3312–3318, doi:10.1002/adfm.200601206.
[35]
Lee, J.; Buxton, G.; Balazs, A. Using nanoparticles to create self-healing composites. J. Chem. Phys. 2004, 121, 5531–5540.
[36]
Hans, M.; Lowman, A. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 2002, 6, 319–327, doi:10.1016/S1359-0286(02)00117-1.
[37]
Lu, T.; Qiao, Y.; Liu, X. Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus 2012, 2, 325–336, doi:10.1098/rsfs.2012.0003.
[38]
Soppimath, K.; Aminabhavi, T.; Kulkarni, A.; Rudzinski, W. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controll. Release 2001, 70, 1–20, doi:10.1016/S0168-3659(00)00339-4.
[39]
Ahn, E.; Gleason, N.; Nakahira, A.; Ying, J. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 2001, 1, 149–153, doi:10.1021/nl0055299.
[40]
Illum, L.; Davis, S.; Muller, R.; Mak, E.; West, P. The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockcopolymer-poloxamine 908. Life Sci. 1986, 40, 367–374.
Lin, W.; Wang, C.; Le, H.; Long, B.; Huang, Y. Special assembly of laminated nanocomposite that mimics nacre. Mater. Sci. Eng. C 2008, 28, 1031–1037, doi:10.1016/j.msec.2007.04.030.
[44]
Wei, H.; Ma, N.; Shi, F.; Wang, Z.; Zhang, X. Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata. Chem. Mater 2007, 19, 1974–1978, doi:10.1021/cm062898i.
[45]
Podsiadlo, P.; Paternel, S.; Roullard, J.; Zhang, Z.; Lee, J.; Lee, J.W.; Gulari, E.; Kotov, N. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir 2005, 21, 11915–11921, doi:10.1021/la051284+.
[46]
Bonderer, L.; Studart, A.; Gauckler, L. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319, 1069–1073, doi:10.1126/science.1148726.
[47]
Sun, F.; Lim, B.; Ryu, S.; Lee, D.; Lee, J. Preparation of multi-layered film of hydroxyapatite and chitosan. Mater. Sci. Eng. C 2010, 30, 789–794, doi:10.1016/j.msec.2010.03.009.
[48]
Yo, H.; Tan, Z.; Fang, H.; Yum, S. Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew. Chem. 2010, 49, 10127–10131, doi:10.1002/anie.201004748.
Lok, C.; Ho, C.; Chen, R.; He, Q.; Yu, W.; Sun, H.; Tam, P.; Chiu, J.; Che, C. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527–534.
[51]
Deville, S.; Saiz, E.; Tomsia, A. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 5480–5489, doi:10.1016/j.biomaterials.2006.06.028.
[52]
Fu, Q.; Rahaman, M.; Dogan, F.; Bal, B. Freeze casting of porous hydroxyapatite scaffolds. 1. Processing and general microstructure. J. Biomed. Mater. Res. B 2007, 86, 125–135.
[53]
Launey, M.; Munch, E.; Alsem, D.; Saiz, E.; Tomsia, A.; Ritchie, R. A novel biomimetic approach to the design of high-performance ceramic-metal composites. J. R. Soc. Interface 2010, 7, 741–753.
[54]
Munch, E.; Launey, M.; Alsem, D.; Saiz, A.; Tomsia, A.; Ritchie, R. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.
[55]
Dong, Z.; Li, Y.; Zou, Q. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 2009, 255, 6087–6091, doi:10.1016/j.apsusc.2009.01.083.
[56]
Trask, R.; Williams, H.; Bond, I. Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspir. Biomim. 2007, 2, P1–P9, doi:10.1088/1748-3182/2/1/P01.
[57]
Thomson, R.; Yaszemski, M.; Powers, J.; Mikos, A. Hydroxyapatite fiber reinforced poly (α-hydroxy ester) foams for bone regeneration. Biomaterials 1998, 19, 1935–1943, doi:10.1016/S0142-9612(98)00097-0.
[58]
Zhang, Y.; Venugopal, J.; el-Turki, A.; Ramakrishna, S.; Su, B.; Lim, C. Electrospun biomimetic nanocompositenanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008, 29, 4314–4322, doi:10.1016/j.biomaterials.2008.07.038.
[59]
Hong, Z.; Reis, R.; Mano, J. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 2008, 4, 1297–1306.
[60]
Roether, J.; Boccaciini, A.; Hench, L.L.; Maquet, V.; Gautier, S.; Jerome, R. Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactitde foams and bioglass for tissue engineering applications. Biomaterials 2002, 23, 3871–3878.
[61]
Song, C.; Labhasetwar, V.; Levy, R. Controlled release of U-86983 from double-layer biodegradable matrices: Effect of additives on release mechanism and kinetics. J. Controll. Release 1997, 45, 177–192.
[62]
Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 2012, 64, 213–222.
[63]
Schroeder, U.; Sommerfeld, P.; Sabel, B. Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides 1998, 19, 777–780, doi:10.1016/S0196-9781(97)00474-9.
[64]
Schroeder, U.; Sommerfeld, P.; Ulrich, S.; Sabel, S. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J. Pharm. Sci. 1998, 87, 1305–1307, doi:10.1021/js980084y.
[65]
Vila, A.; Sanchez, A.; Tobio, M.; Calvo, P.; Alonso, M. Design of biodegradable particles for protein delivery. J. Controll. Release 2002, 78, 15–24, doi:10.1016/S0168-3659(01)00486-2.
[66]
Leroux, J.; Allemann, E.; Jaeghere, F.; Doelker, E.; Gurny, R. Biodegradable nanoparticles—From sustained release formulations to improved site specific drug delivery. J. Controll. Release 1996, 39, 339–350, doi:10.1016/0168-3659(95)00164-6.
[67]
Janes, K.; Calvo, P.; Alonso, M. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 2001, 47, 83–97, doi:10.1016/S0169-409X(00)00123-X.
[68]
Blanco, M.; Alonso, M. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres. Eur. J. Pharm. Biopharm. 1997, 47, 287–294, doi:10.1016/S0939-6411(97)00056-8.
[69]
Nihant, N.; Grandfils, C.; Jerome, R.; Teyssie, P. Microencapsulation by coacervation of poly(lactide-co-glycolide) IV. Effect of the processing parameters on coacervation and encapsulation. J. Controll. Release 1995, 35, 117–125.