Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.
References
[1]
Wang, D.W.; Zhao, S.L.; Xu, Z.; Kong, C.; Gong, W. The improvement of near-ultraviolet electroluminescence of ZnO nanorods/MEH-PPV heterostructure by using a ZnS buffer layer. Org. Electro. 2011, 12, 92–97, doi:10.1016/j.orgel.2010.09.018.
[2]
Boutaud, G.; Cranton, W.M.; Koutsogeorgis, D.C.; Ranson, R.M.; Tsakonas, C.; Thomas, C.B. Growth optimisation of ZnS:Mn thin film phosphors for high intensity miniature electroluminescent displays. Mater. Sci. Eng. B 2009, 165, 202–206, doi:10.1016/j.mseb.2009.07.015.
[3]
Liang, Y.; Xu, H.Y.; Hark, S.K. Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J. Phys. Chem. C 2010, 114, 8343–8347.
[4]
Kao, C.C.; Liu, Y.C. Intense green emission of ZnS:Cu, Al phosphor obtained by using diode structure of carbon nano-tubes field emission display. Mater. Chem. Phys. 2009, 115, 463–466, doi:10.1016/j.matchemphys.2009.01.013.
[5]
Hu, J.S.; Ren, L.L.; Guo, Y.G.; Liang, H.P.; Cao, A.M.; Wan, L.J.; Bai, C.L. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 1269–1273.
[6]
Yu, J.H.; Joo, J.; Park, H.M.; Baik, S.I.; Kim, Y.W.; Kim, S.C.; Hyeon, T.J. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127, 5662–5670.
Yu, S.H.; Yoshimura, M. Shape and phase control of ZnS nanocrystals: Template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv. Mater. 2002, 14, 296–300, doi:10.1002/1521-4095(20020219)14:4<296::AID-ADMA296>3.0.CO;2-6.
[11]
Zhu, Y.C.; Bando, Y.; Xue, D.F.; Golberg, D. Nanocable-aligned ZnS tetrapod nanocrystals. J. Am. Chem. Soc. 2003, 125, 16196–16197, doi:10.1021/ja037965d.
Zhu, Y.C.; Bando, Y.; Xue, D.F.; Golberg, D. Oriented assemblies of ZnS one-dimensional nanostructures. Adv. Mater. 2004, 16, 831–834, doi:10.1002/adma.200305486.
[14]
Zhang, H.; Zhang, S.; Pan, S.; Li, G.; Hou, J. A simple solution route to ZnS nanotubes and hollow nanospheres and their optical properties. Nanotechnology 2004, 15, 945–948, doi:10.1088/0957-4484/15/8/012.
[15]
Liu, H.; Ni, Y.; Han, M.; Liu, Q.; Xu, Z.; Hong, J.; Ma, X. A facile template-free route for synthesis of hollow hexagonal ZnS nano- and submicro-spheres. Nanotechnology 2005, 16, doi:10.1088/0957-4484/16/12/030.
[16]
Wolosiuk, A.; Armagan, O.; Braun, P.V. Double direct templating of periodically nanostructured ZnS hollow microspheres. J. Am. Chem. Soc. 2005, 127, 16356–16367, doi:10.1021/ja054927g.
[17]
Peng, Q.; Xu, S.; Zhuang, Z.; Wang, X.; Li, Y. A small extension to “costs and rewards of children: The effects of becoming a parent on adults’ lives”. Small 2005, 1, 216–221, doi:10.1002/smll.200400043.
Lin, M.; Sudhiranjan, T.; Boothroyd, C.; Loh, K.P. Influence of Au catalyst on the growth of ZnS nanowires. Chem. Phys. Lett. 2004, 400, 175–178, doi:10.1016/j.cplett.2004.10.115.
[21]
Kar, S.; Biswas, S.; Chaudhuri, S. Catalytic growth and photoluminescence properties of ZnS nanowires. Nanotechnology 2005, 16, 737–740, doi:10.1088/0957-4484/16/6/018.
[22]
Moore, D.; Morber, J.R.; Snyder, R.L.; Wang, Z.L. Growth of ultralong ZnS/SiO2 core-shell nanowires by volume and surface diffusion VLS process. J. Phys. Chem. C 2008, 112, 2895–2903, doi:10.1021/jp709903b.
[23]
Kim, D.; Shimpi, P.; Gao, P.X. Zigzag zinc blende ZnS nanowires: Large scale synthesis and their structure evolution induced by electron irradiation. Nano Res. 2009, 2, 966–974, doi:10.1007/s12274-009-9099-3.
[24]
Yang, Y.; Zhang, W. Preparation and photoluminescence of zinc sulfide nanowires. Mater. Lett. 2004, 58, 3836–3838, doi:10.1016/j.matlet.2004.07.039.
[25]
Zhang, H.; Zhang, S.; Zuo, M.; Li, G.; Hou, J. Synthesis of ZnS nanowires and assemblies by carbothermal chemical vapor deposition and their photoluminescence. Eur. J. Inorg. Chem. 2005, 2005, 47–50, doi:10.1002/ejic.200400668.
[26]
Xu, X.J.; Fei, G.T.; Yu, W.H.; Wang, X.W.; Chen, L.; Zhang, L.D. Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method. Nanotechnology 2006, 17, 426–429, doi:10.1088/0957-4484/17/2/013.
Chang, M.; Cao, X.L.; Xu, X.J.; Zhang, L. Fabrication and photoluminescence properties of highly ordered ZnS nanowire arrays embedded in anodic alumina membrane. Phys. Lett. A 2008, 372, 273–276, doi:10.1016/j.physleta.2007.07.031.
[29]
Chai, L.; Du, J.; Xiong, S.; Li, H.; Zhu, Y.; Qian, Y.J. Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique. Phys. Chem. C 2007, 111, 12658–12662, doi:10.1021/jp073009x.
Qian, G.; Huo, K.; Chu, P.K. Statistical theory of protein sequence design by random mutation. J. Phys. Chem. C 2009, 113, 5520–5527, doi:10.1021/jp8101892.
[32]
Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. 1985, 24, 1026–1040, doi:10.1002/anie.198510261.
Murakoshi, K.; Hosokawa, H.; Tanaka, N.; Saito, M.; Wada, Y.; Sakata, T.; Mori, H.; Yanagida, S. Phase transition of ZnS nanocrystallites induced by surface modification at ambient temperature and pressure confirmed by electron diffraction. Chem. Commun. 1998, 3, 321–322.
[35]
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y.D. A simple chemical technique can be used to create a large family of high-quality nanocrystals. Nature 2005, 437, 121–124, doi:10.1038/nature03968.
[36]
Zhao, J.G.; Zhang, H.H. Hydrothermal synthesis and characterization of ZnS hierarchical microspheres. Superlatt. Microstruct. 2012, 51, 663–667, doi:10.1016/j.spmi.2012.02.004.
[37]
Joint Committee on Powder Diffraction Standards (JCPDS). Card no. 80-0007. Available online: http://jcpds.crystalstar.org/ (accessed on 6 September 2013).
[38]
Maiti, U.N.; Nandy, S.; Karan, S.; Mallik, B.; Chattopadhyay, K.K. Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. Appl. Surf. Sci. 2008, 25, 7266–7271.
[39]
Ramimoghadam, D.; Bin Hussein, M.Z.; Taufiq-Yap, Y.H. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 2012, 13, 13275–13293, doi:10.3390/ijms131013275.
[40]
Liu, Y.; Hu, J.C.; Ngo, C.; Prikhodko, S.; Kodambaka, S.; Li, J.L.; Richards, R. Gram-scale wet chemical synthesis of wurtzite-8H nanoporous ZnS spheres with high photocatalytic activity. Appl. Catal. B 2011, 106, 212–219.
[41]
Ullah, M.H.; Kim, I.; Ha, C.S. pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence. Mater. Lett. 2007, 61, 4267–4271.