全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Current Trends in Sensors Based on Conducting Polymer Nanomaterials

DOI: 10.3390/nano3030524

Keywords: conducting polymers, nanomaterials, chemical sensors, biosensors, polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement.

References

[1]  Taur, Y.; Ning, T.H. Fundamental of Modern VLSI Devices; Cambridge University Press: New York, NY, USA, 1998; p. 11.
[2]  Dimitrakopoulos, C.D.; Malenfant, P.R.L. Organic thin film transistors for large area electronics. Adv. Mater. 2002, 14, 99–117, doi:10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9.
[3]  Li, J.; Zhao, Y.; Tan, H.S.; Guo, Y.; Di, C.A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S.H.; Zhou, Y.; et al. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2012, 2, doi:10.1038/srep00754.
[4]  Cho, S.I.; Lee, S.B. Fast electrochemistry of conductive polymer nanotubes: Synthesis, mechanism, and application. Acc. Chem. Res. 2008, 41, 699–707, doi:10.1021/ar7002094.
[5]  Cho, S.I.; Kwon, W.J.; Choi, S.J.; Kim, P.; Park, S.A.; Kim, J.; Son, S.J.; Xiao, R.; Kim, S.H.; Lee, S.B. Nanotube-based ultrafast electrochromic display. Adv. Mater. 2005, 17, 171–175, doi:10.1002/adma.200400499.
[6]  Rahman, M.A.; Kumar, P.; Park, D.S.; Shim, Y.B. Electrochemical sensors based on organic conjugated polymers. Sensors 2008, 8, 118–141, doi:10.3390/s8010118.
[7]  Bai, H.; Shi, G.Q. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307, doi:10.3390/s7030267.
[8]  Yoon, H.; Jang, J. Conducting-polymer nanomaterials for high-performance sensor applications: Issues and challenges. Adv. Funct. Mater. 2009, 19, 1567–1576, doi:10.1002/adfm.200801141.
[9]  Yoon, H.; Choi, M.J.; Lee, K.A.; Jang, J.S. Versatile strategies for fabricating polymer nanomaterials with controlled size and morphology. Macromol. Res. 2008, 16, 85–102, doi:10.1007/BF03218836.
[10]  Shin, S.; Yoon, H.; Jang, J. Polymer-encapsulated iron oxide nanoparticles as highly efficient Fenton catalysts. Catal. Commun. 2008, 10, 178–182, doi:10.1016/j.catcom.2008.08.027.
[11]  Cheng, D.M.; Zhou, X.D.; Xia, H.B.; Chan, H.S.O. Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chem. Mater. 2005, 17, 3578–3581, doi:10.1021/cm0503230.
[12]  Hao, L.Y.; Zhu, C.L.; Jiang, W.Q.; Chen, C.N.; Hu, Y.; Chen, Z.Y. Sandwich Fe2O3@SiO2@PPy ellipsoidal spheres and four types of hollow capsules by hematite olivary particles. J. Mater. Chem. 2004, 14, 2929–2934, doi:10.1039/b404734f.
[13]  Jang, J.; Yoon, H. Multigram-scale fabrication of monodisperse conducting polymer and magnetic carbon nanoparticles. Small 2005, 1, 1195–1199, doi:10.1002/smll.200500237.
[14]  Bajpai, V.; He, P.G.; Dai, L.M. Conducting-polymer microcontainers: Controlled syntheses and potential applications. Adv. Funct. Mater. 2004, 14, 145–151, doi:10.1002/adfm.200304489.
[15]  Liu, R.; Lee, S.B. MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 2008, 130, 2942–2943, doi:10.1021/ja7112382.
[16]  Callegari, V.; Gence, L.; Melinte, S.; Demoustier-Champagne, S. Electrochemically template-grown multi-segmented gold-conducting polymer nanowires with tunable electronic behavior. Chem. Mater. 2009, 21, 4241–4247, doi:10.1021/cm901224u.
[17]  Li, G.T.; Bhosale, S.; Wang, T.Y.; Zhang, Y.; Zhu, H.S.; Fuhrhop, K.H. Gram-scale synthesis of submicrometer-long polythiophene wires in mesoporous silica matrices. Angew. Chem. Int. Ed. 2003, 42, 3818–3821, doi:10.1002/anie.200351158.
[18]  Xiao, R.; Cho, S.I.; Liu, R.; Lee, S.B. Controlled electrochemical synthesis of conductive polymer nanotube structures. J. Am. Chem. Soc. 2007, 129, 4483–4489, doi:10.1021/ja068924v.
[19]  Han, M.G.; Foulger, S.H. 1-dimensional structures of poly(3,4-ethylenedioxythiophene) (PEDOT): A chemical route to tubes, rods, thimbles, and belts. Chem. Commun. 2005, 24, 3092–3094.
[20]  Yoon, H.; Chang, M.; Jang, J. Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv. Funct. Mater. 2007, 17, 431–436, doi:10.1002/adfm.200600106.
[21]  Zhang, X.T.; Zhang, J.; Song, W.H.; Liu, Z.F. Controllable synthesis of conducting polypyrrole nanostructures. J. Phys. Chem. B 2006, 110, 1158–1165, doi:10.1021/jp054335k.
[22]  Jang, J.; Yoon, H. Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems. Langmuir 2005, 21, 11484–11489, doi:10.1021/la051447u.
[23]  Jang, J.; Yoon, H. Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization. Chem. Commun. 2003, 720–721, doi:10.1039/B211716A.
[24]  Zhang, X.Y.; Goux, W.J.; Manohar, S.K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am. Chem. Soc. 2004, 126, 4502–4503, doi:10.1021/ja031867a.
[25]  Laforgue, A.; Robitaille, L. Deposition of ultrathin coatings of polypyrrole and poly(3,4-ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chem. Mater. 2010, 22, 2474–2480, doi:10.1021/cm902986g.
[26]  Zhang, X.Y.; Manohar, S.K. Narrow pore-diameter polypyrrole nanotubes. J. Am. Chem. Soc. 2005, 127, 14156–14157, doi:10.1021/ja054789v.
[27]  Huang, L.M.; Wang, Z.B.; Wang, H.T.; Cheng, X.L.; Mitra, A.; Yan, Y.S. Polyaniline nanowires by electropolymerization from liquid crystalline phases. J. Mater. Chem. 2002, 12, 388–391, doi:10.1039/b107499g.
[28]  Goto, H. Electrochemical polymerization of pyrrole in cholesteric liquid crystals: Morphology and optical properties. J. Polym. Sci. Polym. Chem. 2007, 45, 1377–1387, doi:10.1002/pola.21900.
[29]  Hulvat, J.F.; Stupp, S.I. Anisotropic properties of conducting polymers prepared by liquid crystal templating. Adv. Mater. 2004, 16, 589–592, doi:10.1002/adma.200306263.
[30]  Martin, J.; Maiz, J.; Sacristan, J.; Mijangos, C. Tailored polymer-based nanorods and nanotubes by “template synthesis”: From preparation to applications. Polymer 2012, 53, 1149–1166, doi:10.1016/j.polymer.2012.01.028.
[31]  Kros, A.; van Hovell, W.F.M.; Sommerdijk, N.A.J.M.; Nolte, R.J.M. Poly(3,4-ethylenedioxythiophene)-based glucose biosensors. Adv. Mater. 2001, 13, 1555–1557, doi:10.1002/1521-4095(200110)13:20<1555::AID-ADMA1555>3.0.CO;2-7.
[32]  Greiner, A.; Wendorff, J.H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed. 2007, 46, 5670–5703, doi:10.1002/anie.200604646.
[33]  Kwon, O.S.; Park, S.J.; Park, H.W.; Kim, T.; Kang, M.; Jang, J.; Yoon, H. Kinetically controlled formation of multidimensional poly(3,4-ethylenedioxythiophene) nanostructures in vapor-deposition polymerization. Chem. Mater. 2012, 24, 4088–4092, doi:10.1021/cm301972f.
[34]  Hong, J.Y.; Yoon, H.; Jang, J. Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: A light-scattering analysis. Small 2010, 6, 679–686.
[35]  Long, Y.Z.; Li, M.M.; Gu, C.Z.; Wan, M.X.; Duvail, J.L.; Liu, Z.W.; Fan, Z.Y. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011, 36, 1415–1442, doi:10.1016/j.progpolymsci.2011.04.001.
[36]  Zhong, W.B.; Deng, J.Y.; Yang, Y.S.; Yang, W.T. Synthesis of large-area three-dimensional polyaniline nanowire networks using a “soft template”. Macromol. Rapid. Commun. 2005, 26, 395–400, doi:10.1002/marc.200400463.
[37]  Liu, Z.; Zhang, X.Y.; Poyraz, S.; Surwade, S.P.; Manohar, S.K. Oxidative template for conducting polymer nanoclips. J. Am. Chem. Soc. 2010, 132, 13158–13159.
[38]  Tran, H.D.; D’Arcy, J.M.; Wang, Y.; Beltramo, P.J.; Strong, V.A.; Kaner, R.B. The oxidation of aniline to produce “polyaniline”: A process yielding many different nanoscale structures. J. Mater. Chem. 2011, 21, 3534–3550, doi:10.1039/c0jm02699a.
[39]  Ding, H.J.; Shen, J.Y.; Wan, M.X.; Chen, Z.J. Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromol. Chem. Phys. 2008, 209, 864–871, doi:10.1002/macp.200700624.
[40]  Park, H.W.; Kim, T.; Huh, J.; Kang, M.; Lee, J.E.; Yoon, H. Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 2012, 6, 7624–7633, doi:10.1021/nn3033425.
[41]  Du, J.M.; Zhang, J.L.; Han, B.X.; Liu, Z.M.; Wan, M.X. Polyaniline microtubes synthesized via supercritical CO2 and aqueous interfacial polymerization. Synth. Met. 2005, 155, 523–526, doi:10.1016/j.synthmet.2005.07.336.
[42]  Wan, M.X. Some issues related to polyaniline micro-/nanostructures. Macromol. Rapid Commun. 2009, 30, 963–975, doi:10.1002/marc.200800817.
[43]  Zhang, L.J.; Wan, M.X. Chiral polyaniline nanotubes synthesized via a self-assembly process. Thin Solid Films 2005, 477, 24–31, doi:10.1016/j.tsf.2004.08.106.
[44]  Wang, J.; Chan, S.; Carlson, R.R.; Luo, Y.; Ge, G.L.; Ries, R.S.; Heath, J.R.; Tseng, H.R. Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett. 2004, 4, 1693–1697, doi:10.1021/nl049114p.
[45]  Alam, M.M.; Wang, J.; Guo, Y.Y.; Lee, S.P.; Tseng, H.R. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J. Phys. Chem. B 2005, 109, 12777–12784, doi:10.1021/jp050903k.
[46]  Lu, G.W.; Li, C.; Shen, J.Y.; Chen, Z.J.; Shi, G.Q. Preparation of highly conductive gold-poly(3,4-ethylenedioxythiophene) nanocables and their conversion to poly(3,4-ethylenedioxythiophene) nanotubes. J. Phys. Chem. C 2007, 111, 5926–5931, doi:10.1021/jp070387t.
[47]  Chang, M.; Kim, T.; Park, H.W.; Kang, M.; Reichmanis, E.; Yoon, H. Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Appl. Mater. Interfaces 2012, 4, 4357–4365, doi:10.1021/am3009967.
[48]  Bakker, E.; Qin, Y. Electrochemical sensors. Anal. Chem. 2006, 78, 3965–3983, doi:10.1021/ac060637m.
[49]  Stetter, J.R.; Li, J. Amperometric gas sensors—A review. Chem. Rev. 2008, 108, 352–366, doi:10.1021/cr0681039.
[50]  Kwon, O.S.; Hong, J.Y.; Park, S.J.; Jang, Y.; Jang, J. Resistive gas sensors based on precisely size-controlled polypyrrole nanoparticles: Effects of particle size and deposition method. J. Phys. Chem. C 2010, 114, 18874–18879, doi:10.1021/jp1083086.
[51]  Kwon, O.S.; Park, S.J.; Yoon, H.; Jang, J. Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. Chem. Commun. 2012, 48, 10526–10528, doi:10.1039/c2cc35307e.
[52]  Al-Mashat, L.; Debiemme-Chouvy, C.; Borensztajn, S.; Wlodarski, W. Electropolymerized polypyrrole nanowires for hydrogen gas sensing. J. Phys. Chem. C 2012, 116, 13388–13394, doi:10.1021/jp3015854.
[53]  Virji, S.; Kaner, R.B.; Weiller, B.H. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J. Phys. Chem. B 2006, 110, 22266–22270, doi:10.1021/jp063166g.
[54]  Fowler, J.D.; Virji, S.; Kaner, R.B.; Weiller, B.H. Hydrogen detection by polyaniline nanofibers on gold and platinum electrodes. J. Phys. Chem. C 2009, 113, 6444–6449, doi:10.1021/jp810500q.
[55]  Aguilar, A.D.; Forzani, E.S.; Leright, M.; Tsow, F.; Cagan, A.; Iglesias, R.A.; Nagahara, L.A.; Amlani, I.; Tsui, R.; Tao, N.J. A hybrid nanosensor for TNT vapor detection. Nano Lett. 2010, 10, 380–384, doi:10.1021/nl902382s.
[56]  Virji, S.; Fowler, J.D.; Baker, C.O.; Huang, J.X.; Kaner, R.B.; Weiller, B.H. Polyaniline manofiber composites with metal salts: Chemical sensors for hydrogen sulfide. Small 2005, 1, 624–627, doi:10.1002/smll.200400155.
[57]  Virji, S.; Kojima, R.; Fowler, J.D.; Villanueva, J.G.; Kaner, R.B.; Weiller, B.H. Polyaniline nanofiber composites with amines: Novel materials for phosgene detection. Nano Res. 2009, 2, 135–142, doi:10.1007/s12274-009-9011-1.
[58]  Virji, S.; Kojima, R.; Fowler, J.D.; Kaner, R.B.; Weiller, B.H. Polyaniline nanofiber-metal salt composite materials for arsine detection. Chem. Mater. 2009, 21, 3056–3061, doi:10.1021/cm802397j.
[59]  Kwon, O.S.; Park, S.J.; Lee, J.S.; Park, E.; Kim, T.; Park, H.W.; You, S.A.; Yoon, H.; Jang, J. Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett. 2012, 12, 2797–2802, doi:10.1021/nl204587t.
[60]  Airoudj, A.; Debarnot, D.; Beche, B.; Poncin-Epaillard, F. Design and sensing properties of an integrated optical gas sensor based on a multilayer structure. Anal. Chem. 2008, 80, 9188–9194, doi:10.1021/ac801320g.
[61]  Pelletier, N.; Beche, B.; Gaviot, E.; Camberlein, L.; Grossard, N.; Polet, F.; Zyss, J. Single-mode rib optical waveguides on SOG/SU-8 polymer and integrated Mach-Zehnder for designing thermal sensors. IEEE Sens. J. 2006, 6, 565–570, doi:10.1109/JSEN.2006.874489.
[62]  Yoon, H.; Kim, J.H.; Lee, N.; Kim, B.G.; Jang, J. A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. ChemBioChem 2008, 9, 634–641, doi:10.1002/cbic.200700660.
[63]  Lee, C.S.; Kim, S.K.; Kim, M. Ion-sensitive field-effect transistor for biological sensing. Sensors 2009, 9, 7111–7131, doi:10.3390/s90907111.
[64]  Yoon, H.; Ko, S.; Jang, J. Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. J. Phys. Chem. B 2008, 112, 9992–9997, doi:10.1021/jp800567h.
[65]  Yoon, H.; Lee, S.H.; Kwon, O.S.; Song, H.S.; Oh, E.H.; Park, T.H.; Jang, J. Polypyrrole nanotubes conjugated with human olfactory receptors: High-performance transducers for FET-type bioelectronic noses. Angew. Chem. Int. Ed. 2009, 48, 2755–2758.
[66]  Song, H.S.; Kwon, O.S.; Lee, S.H.; Park, S.J.; Kim, U.K.; Jang, J.; Park, T.H. Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett. 2013, 13, 172–178, doi:10.1021/nl3038147.
[67]  Kwon, O.S.; Ahn, S.R.; Park, S.J.; Song, H.S.; Lee, S.H.; Lee, J.S.; Hong, J.Y.; Lee, J.S.; You, S.A.; Yoon, H.; et al. Ultrasensitive and selective recognition of peptide hormone using close-packed arrays of hPTHR-conjugated polymer nanoparticles. ACS Nano 2012, 6, 5549–5558, doi:10.1021/nn301482x.
[68]  Yoon, H.; Jang, J. A field-effect-transistor sensor based on polypyrrole nanotubes coupled with heparin for thrombin detection. Mol. Cryst. Liq. Cryst. 2008, 491, 21–31, doi:10.1080/15421400802328725.
[69]  Shirale, D.J.; Bangar, M.A.; Chen, W.; Myung, N.V.; Mulchandani, A. Effect of aspect ratio (length:diameter) on a single polypyrrole nanowire FET device. J. Phys. Chem. C 2010, 114, 13375–13380, doi:10.1021/jp104377e.
[70]  Ramanathan, K.; Bangar, M.A.; Yun, M.H.; Chen, W.F.; Mulchandani, A.; Myung, N.V. Individually addressable conducting polymer nanowires array. Nano Lett. 2004, 4, 1237–1239, doi:10.1021/nl049477p.
[71]  Yun, M.H.; Myung, N.V.; Vasquez, R.P.; Lee, C.S.; Menke, E.; Penner, R.M. Electrochemically grown wires for individually addressable sensor arrays. Nano Lett. 2004, 4, 419–422, doi:10.1021/nl035069u.
[72]  Ramanathan, K.; Bangar, M.A.; Yun, M.; Chen, W.; Myung, N.V.; Mulchandani, A. Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J. Am. Chem. Soc. 2005, 127, 496–497, doi:10.1021/ja044486l.
[73]  Bangar, M.A.; Shirale, D.J.; Chen, W.; Myung, N.V.; Mulchandani, A. Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal. Chem. 2009, 81, 2168–2175, doi:10.1021/ac802319f.
[74]  Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825, doi:10.1021/cr068123a.
[75]  Yoon, H.; Ahn, J.H.; Barone, P.W.; Yum, K.; Sharma, R.; Boghossian, A.A.; Han, J.H.; Strano, M.S. Periplasmic binding proteins as optical modulators of single-walled carbon nanotube fluorescence: Amplifying a nanoscale actuator. Angew. Chem. Int. Ed. 2011, 50, 1828–1831.
[76]  Barone, P.W.; Yoon, H.; Ortiz-Garcia, R.; Zhang, J.Q.; Ahn, J.H.; Kim, J.H.; Strano, M.S. Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling. ACS Nano 2009, 3, 3869–3877, doi:10.1021/nn901025x.
[77]  Zhao, M.; Wu, X.M.; Cai, C.X. Polyaniline nanofibers: Synthesis, characterization, and application to direct electron transfer of glucose oxidase. J. Phys. Chem. C 2009, 113, 4987–4996, doi:10.1021/jp807621y.
[78]  Forzani, E.S.; Zhang, H.Q.; Nagahara, L.A.; Amlani, I.; Tsui, R.; Tao, N.J. A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 2004, 4, 1785–1788, doi:10.1021/nl049080l.
[79]  Wu, J.M.; Yin, L.W. Platinum nanoparticle modified polyaniline-functionalized Boron Nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl. Mater. Interfaces 2011, 3, 4354–4362.
[80]  Chen, K.; Liu, M.C.; Zhao, G.H.; Shi, H.J.; Fan, L.F.; Zhao, S.C. Fabrication of a novel and simple microcystin-LR photoelectrochemical sensor with high sensitivity and selectivity. Environ. Sci. Technol. 2012, 46, 11955–11961, doi:10.1021/es302327w.
[81]  Xia, Y.T.; Deng, J.L.; Jiang, L. Simple and highly sensitive detection of hepatotoxin microcystin-LR via colorimetric variation based on polydiacetylene vesicles. Sensors Actuat. B 2010, 145, 713–719, doi:10.1016/j.snb.2010.01.029.
[82]  Zhou, H.; Xu, G.L.; Zhu, A.H.; Zhao, Z.; Ren, C.C.; Nie, L.L.; Kan, X.W. A multiporous electrochemical sensor for epinephrine recognition and detection based on molecularly imprinted polypyrrole. RSC Adv. 2012, 2, 7803–7808, doi:10.1039/c2ra20787g.
[83]  Alici, G.; Spinks, G.M.; Madden, J.D.; Wu, Y.Z.; Wallace, G.G. Response characterization of electroactive polymers as mechanical sensors. IEEE-ASME T. Mech. 2008, 13, 187–196.
[84]  Liu, N.S.; Fang, G.J.; Wan, J.W.; Zhou, H.; Long, H.; Zhao, X.Z. Electrospun PEDOT:PSS-PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J. Mater. Chem. 2011, 21, 18962–18966.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133