全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

DOI: 10.3390/nano3030486

Keywords: room temperature ferromagnetism, Mg vacancy, magnetron sputtering, O2 content, annealing

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O 2 containing working gas atmosphere of (N 2 + O 2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (P O 2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (M S) value of 2.68 emu/cm 3 obtained for the MgO film deposited in P O 2 of 10% increases to 9.62 emu/cm 3 for film deposited at P O 2 of 40%. However, the M S values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, M S decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies.

References

[1]  Renaud, G. Oxide surfaces and metal/oxide interfaces studied by grazing angle incidence X-ray scattering. Surf. Sci. Rep. 1998, 32, 1–90, doi:10.1016/S0167-5729(98)00005-3.
[2]  Cáceres, D.; Vergara, I.; González, R. Microstructural characterization of MgO thin films grown by radio-frequency sputtering. Target and substrate-temperature effect. J. Appl. Phys. 2003, 93, 4300–4305.
[3]  Balcells, L.I.; Beltrán, J.I.; Martíne-Boubeta, C.; Konstantinovi?, Z.; Arbiol, J.; Martinez, B. Aging of magnetic properties in MgO films. Appl. Phys. Lett. 2010, 97, 252503:1–252503:3.
[4]  Nagashima, K.; Yanagida, T.; Tanaka, H.; Kawai, T. Epitaxial growth of MgO nanowires by pulsed laser deposition. J. Appl. Phys. 2007, 101, 124304:1–124304:4.
[5]  Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724, doi:10.1038/nmat2804.
[6]  Parkin, S.S.P.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Smant, M.; Yang, S.-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867, doi:10.1038/nmat1256.
[7]  Vuoristo, P.; Mantyl?, T.; Kettunen, P. Adhesion and structure of rf sputtered magnesium oxide coatings on various metal substrates. J. Vac. Sci. Technol. A 1986, 4, 2932–2937, doi:10.1116/1.573663.
[8]  Costache, M.V.; Moodera, J.S. All magnesium diboride Josephson junctions with MgO and native oxide barriers. Appl. Phys. Lett. 2010, 96, 082508:1–082508:3.
[9]  Yamamori, H.; Shoji, A. Improvement of uniformity of NbCN/MgO/NbCN Josephson junctions for large-scale circuit applications. Supercond. Sci. Technol. 1999, 12, 877–879, doi:10.1088/0953-2048/12/11/355.
[10]  Sugiyama, K.; Akazawa, K.; Oshima, M.; Miura, H.; Matsuda, T.; Nomura, O. Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem. Plasma Process. 1986, 6, 179–193, doi:10.1007/BF00571275.
[11]  Nibbelke, R.H.; Scheerová, J.; de Croon, M.H.J.M.; Maroon, G.B. The oxidative coupling of methane over MgO-based catalysts: A steady-state isotope transient kinetic analysis. J. Catal. 1995, 156, 106–119, doi:10.1006/jcat.1995.1236.
[12]  Chen, Y.; Sibley, W.A.; Srygley, F.D.; Weeks, R.A.; Hensley, E.B.; Kroes, R.L. Negative-ion vacancies in irradiated MgO. J. Phys. Chem. Solids 1968, 29, 863–865, doi:10.1016/0022-3697(68)90148-0.
[13]  Freund, M.M.; Freund, F.; Batllo, F. Highly mobile oxygen holes in magnesium oxide. Phys. Rev. Lett. 1989, 63, 2096–2099, doi:10.1103/PhysRevLett.63.2096.
[14]  Martinez Boubeta, C.; Beltrán, J.I.; Balcells, L.I.; Konstantinovi?, Z.; Valencia, S.; Schmitz, D.; Arbiol, J.; Estrade, S.; Cornil, J.; Martínez, B. Ferromagnetism in transparent thin films of MgO. Phys. Rev. B 2010, 82, 024405:1–024405:7.
[15]  Nitesh, K.; Sanyal, D.; Sundaresan, A. Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy. Chem. Phys. Lett. 2009, 477, 360–364, doi:10.1016/j.cplett.2009.07.037.
[16]  Ferrari, A.M.; Pacchioni, G. Electronic structure of F and V centers on the MgO surface. J. Phys. Chem. 1995, 99, 17010–17018, doi:10.1021/j100046a029.
[17]  Gu, B.; Bulut, N.; Ziman, T.; Maekawa, S. Possible d° ferromagnetism in MgO doped with nitrogen. Phys. Rev. B 2009, 79, doi:10.1103/PhysRevB.79.024407.
[18]  Grob, M.; Pratzer, M.; Morgenstern, M.; Lezaic, M. Catalytic growth of N-doped MgO on Mo(001). Phys. Rev. B 2012, 86, 075455, doi:10.1103/PhysRevB.86.075455.
[19]  Moyses Araujo, C.; Kapilashrami, M.; Xu, J.; Jayakumar, O.D.; Nagar, S.; Wu, Y.; ?rhammar, C.; Johansson, B.; Belova, L.; Ahuja, R.; et al. Room temperature ferromagnetism in pristine MgO thin films. Appl. Phys. Lett. 2010, 96, 232505:1–232505:3.
[20]  Prucnal, S.; Shalimov, A.; Ozerov, M.; Potzger, K.; Skorupa, W. Magnetic and optical properties of virgin arc furnace grown MgO crystals. J. Cryst. Growth 2012, 339, 70–74, doi:10.1016/j.jcrysgro.2011.11.067.
[21]  Gao, F.; Hu, J.F.; Yang, C.L.; Zheng, Y.J.; Qin, H.W.; Sun, L.; Kong, X.W.; Jiang, M.H. First-principles study of magnetism driven by intrinsic defects in MgO. Solid State Commun. 2009, 149, 855–858, doi:10.1016/j.ssc.2009.03.010.
[22]  Beltrán, J.I.; Monty, C.; Balcells, L.I.; Martínez-Boubeta, C. Possible d° ferromagnetism in MgO. Solid State Commun. 2009, 149, 1654–1657, doi:10.1016/j.ssc.2009.06.044.
[23]  Yu, H.K.; Lee, J.-L. Growth mechanism of MgO film on Si (100): Domain matching epitaxy, strain relaxation, preferred orientation formation. Cryst. Growth Des. 2010, 10, 5200–5204, doi:10.1021/cg101001e.
[24]  Martínez Boubeta, C.; Cebollada, A.; Calleja, J.F.; Contreras, C.; Peir?, F.; Cornet, A. Magnetization reversal and magnetic anisotropies in epitaxial Fe/MgO and Fe/MgO/Fe heterostructures grown on Si (001). J. Appl. Phys. 2003, 93, 2126–2134, doi:10.1063/1.1538317.
[25]  Kapilashrami, M.; Xu, J.; Str?m, V.; Rao, K.V.; Belova, L. Transition from ferromagnetism to diamagnetism in undoped ZnO thin films. Appl. Phys. Lett. 2009, 95, 033104:1–033104:3.
[26]  Kim, D.Y.; Hong, J.S.; Park, Y.R.; Kim, K.J. The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys. Condens. Matter 2009, 21, 195405:1–195405:4.
[27]  Hong, N.H.; Sakai, J.; Poirot, N.; Brize, V. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 2006, 73, 132404:1–132404:4.
[28]  Hong, N.H. Magnetism due to defects/oxygen vacancies in HfO2 thin films. Phys. Status Solidi C 2007, 4, 1270–1275, doi:10.1002/pssc.200673801.
[29]  Li, J.; Jiang, Y.; Li, Y.; Yang, D.; Xu, Y.; Yan, M. Origin of room temperature ferromagnetism in MgO films. Appl. Phys. Lett. 2013, 102, 072406:1–072406:4.
[30]  Kapilashrami, M.; Xu, J.; Rao, K.V.; Belova, L.; Carlegrim, E.; Fahlman, M. Experimental evidence for ferromagnetism at room temperature in MgO thin films. J. Phys. Condens. Matter 2010, 22, 345004:1–345004:5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133