Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF 4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF 4 nanoparticles and stabilizing cubic phase NaYF 4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF 4 upconversion nanoparticles.
References
[1]
Wang, F.; Wang, J.; Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 7456–7460, doi:10.1002/anie.201003959.
[2]
Tu, D.; Liu, Y.; Zhu, H.; Li, R.; Liu, L.; Chen, X. Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals. Angew. Chem. Int. Ed. 2013, 52, 1128–1133, doi:10.1002/anie.201208218.
[3]
Aebischer, A.; Hostettler, M.; Hauser, J.; Kramer, K.; Weber, T.; Gudel, H.U.; Burgi, H.B. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew. Chem. Int. Ed. 2006, 45, 2802–2806, doi:10.1002/anie.200503966.
Liu, Y.; Chen, M.; Cao, T.; Sun, Y.; Li, C.; Liu, Q.; Yang, T.; Yao, L.; Feng, W.; Li, F. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 2013, 135, 9869–9876.
[9]
Haase, M.; Schafer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829, doi:10.1002/anie.201005159.
[10]
Liu, Q.; Feng, W.; Yang, T.; Yi, T.; Li, F. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 2013, 8, 2033–2044, doi:10.1038/nprot.2013.114.
[11]
Corstjens, P.L.; Zuiderwijk, M.; Tanke, H.J.; van der Ploeg-van Schip, J.J.; Ottenhoff, T.H.; Geluk, A. A user-friendly, highly sensitive assay to detect the IFN-γ secretion by T cells. Clin. Biochem. 2008, 41, 440–444, doi:10.1016/j.clinbiochem.2007.12.015.
[12]
Wang, H.-Q.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C.J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 2011, 23, 2675–2680, doi:10.1002/adma.201100511.
[13]
Su, L.T.; Karuturi, S.K.; Luo, J.; Liu, L.; Liu, X.; Guo, J.; Sum, T.C.; Deng, R.; Fan, H.J.; Liu, X.; et al. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Adv. Mater. 2013, 25, 1603–1607, doi:10.1002/adma.201204353.
[14]
Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201, doi:10.1039/c2cs35288e.
[15]
Shalav, A.; Richards, B.S.; Trupke, T.; Kr?mer, K.W.; Güdel, H.U. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 2005, 86, doi:10.1063/1.1844592.
Sch?fer, H.; Ptacek, P.; Eickmeier, H.; Haase, M. Synthesis of hexagonal Yb3+, Er3+-doped NaYF4 nanocrystals at low temperature. Adv. Funct. Mater. 2009, 19, 3091–3097, doi:10.1002/adfm.200900642.
[21]
Yi, G.S.; Chow, G.M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329, doi:10.1002/adfm.200600053.
[22]
Wang, L.; Li, Y. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 2007, 19, 727–734, doi:10.1021/cm061887m.
[23]
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124, doi:10.1038/nature03968.
[24]
Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.
[25]
Zhao, C.; Kong, X.; Liu, X.; Tu, L.; Wu, F.; Zhang, Y.; Liu, K.; Zeng, Q.; Zhang, H. Li+ ion doping: An approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 2013, 5, 8084–8089, doi:10.1039/c3nr01916k.
[26]
Lei, L.; Chen, D.; Huang, P.; Xu, J.; Zhang, R.; Wang, Y. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping. Nanoscale 2013, 5, doi:10.1039/C3NR03497F.
[27]
Chen, D.; Huang, P.; Yu, Y.; Huang, F.; Yang, A.; Wang, Y. Dopant-induced phase transition: A new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 2011, 47, 5801–5803, doi:10.1039/c0cc05722c.
[28]
Chen, D.; Yu, Y.; Huang, F.; Lin, H.; Huang, P.; Yang, A.; Wang, Z.; Wang, Y. Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence. J. Mater. Chem. 2012, 22, 2632–2640, doi:10.1039/c1jm14589d.
[29]
Chen, D.; Wang, Y. Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale 2013, 5, 4621–4637, doi:10.1039/c3nr00368j.
[30]
Chen, D.; Yu, Y.; Huang, F.; Wang, Y. Phase transition from hexagonal LnF3 (Ln = La, Ce, Pr) to cubic Ln0.8M0.2F2.8 (M = Ca, Sr, Ba) nanocrystals with enhanced upconversion induced by alkaline-earth doping. Chem. Commun. 2011, 47, 2601–2603, doi:10.1039/c0cc04846a.
[31]
Cheng, Q.; Sui, J.; Cai, W. Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale 2012, 4, 779–784, doi:10.1039/c1nr11365h.
[32]
Yu, X.; Li, M.; Xie, M.; Chen, L.; Li, Y.; Wang, Q. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 2010, 3, 51–60, doi:10.1007/s12274-010-1008-2.
[33]
Wang, H.-Q.; Tilley, R.D.; Nann, T. Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis. CrystEngComm 2010, 12, 1993–1996, doi:10.1039/b927225a.
[34]
Dou, Q.; Zhang, Y. Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir 2011, 27, 13236–13241, doi:10.1021/la201910t.
[35]
Zhang, W.H.; Wang, F.; Zhang, W.D. Phase transformation of ultrathin nanowires through lanthanide doping: From InOOH to rh-In2O3. Dalton Trans. 2013, 42, 4361–6364, doi:10.1039/c3dt32929a.
Shsnnon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767, doi:10.1107/S0567739476001551.
[39]
Joint Committee on Powder Diffraction Standards (JCPDS) International Centre for Diffraction Data; File Number 16-0334; JCPDS International Centre for Diffraction Data: Philadelphia, PA, USA, 2001.
[40]
Joint Committee on Powder Diffraction Standards (JCPDS) International Centre for Diffraction Data; File Number 06-0262; JCPDS International Centre for Diffraction Data: Philadelphia, PA, USA, 2001.
[41]
Joint Committee on Powder Diffraction Standards (JCPDS) International Centre for Diffraction Data; File Number 77-2042; JCPDS International Centre for Diffraction Data: Philadelphia, PA, USA, 2001.
[42]
Chen, D.; Yu, Y.; Huang, F.; Huang, P.; Yang, A.; Wang, Y. Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J. Am. Chem. Soc. 2010, 132, 9976–9978, doi:10.1021/ja1036429.