全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2014 

Toxicity Assessments of Chalcone and Some Synthetic Chalcone Analogues in a Zebrafish Model

DOI: 10.3390/molecules19010641

Keywords: chalcone, embryogenesis, muscle, toxicity, zebrafish

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to investigate the in vivo toxicities of some novel synthetic chalcones. Chalcone and four chalcone analogues 1a– d were evaluated using zebrafish embryos following antibody staining to visualize their morphological changes and muscle fiber alignment. Results showed that embryos treated with 3'-hydroxychalcone (compound 1b) displayed a high percentage of muscle defects (96.6%), especially myofibril misalignment. Ultrastructural analysis revealed that compound 1b-treated embryos displayed many muscle defect phenotypes, including breakage and collapse of myofibrils, reduced cell numbers, and disorganized thick (myosin) and thin (actin) filaments. Taken together, our results provide in vivo evidence of the myotoxic effects of the synthesized chalcone analogues on developing zebrafish embryos.

References

[1]  Mohamad, A.S.; Akhtar, M.N.; Zakaria, Z.A.; Perimal, E.K.; Khalid, S.; Mohd, P.A.; Khalid, M.H.; Israf, D.A.; Lajis, N.H.; Sulaiman, M.R. Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. Eur. J. Pharmacol. 2010, 647, 103–109, doi:10.1016/j.ejphar.2010.08.030.
[2]  Wu, J.; Lee, J.; Cai, Y.; Pan, Y.; Ye, F.; Zhang, Y.; Zhao, Y.; Yang, S.; Li, X.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem. 2011, 54, 8110–8123, doi:10.1021/jm200946h.
[3]  Ajaiyeoba, E.O.; Ogbole, O.O.; Abiodun, O.O.; Ashidi, J.S.; Houghton, P.J.; Wright, C.W. Cajachalcone: An antimalarial compound from Cajanus cajan leaf extract. J. Parasitol. Res. 2013, 2013, 703781.
[4]  Ajiboye, T.O.; Yakubu, M.T.; Oladiji, A.T. Electrophilic and reactive oxygen species detoxification potentials of chalcone dimers is mediated by redox transcription factor Nrf-2. J. Biochem. Mol. Toxicol. 2013, doi:10.1002/jbt.21517.
[5]  Chen, Y.H.; Wang, W.H.; Wang, Y.H.; Lin, Z.Y.; Wen, C.C.; Chern, C.Y. Evaluation of anti-inflammatory effect of chalcone and chalcone analogues in a zebrafish model. Molecules 2013, 18, 2052–2060, doi:10.3390/molecules18022052.
[6]  Pan, Y.; Chen, Y.; Li, Q.; Yu, X.; Wang, J.; Zheng, J. The synthesis and evaluation of novel hydroxyl substituted chalcone analogs with in vitro anti-free radicals pharmacological activity and in vivo anti-oxidation activity in a free radical-injury Alzheimer’s model. Molecules 2013, 18, 1693–1703, doi:10.3390/molecules18021693.
[7]  Wei, H.; Zhang, X.; Wu, G.; Yang, X.; Pan, S.; Wang, Y.; Ruan, J. Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity. Food Chem. Toxicol. 2013, 60, 147–152, doi:10.1016/j.fct.2013.07.045.
[8]  Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett. 2010, 20, 7205–7211, doi:10.1016/j.bmcl.2010.10.116.
[9]  Fang, X.; Yang, B.; Cheng, Z.; Yang, M.; Su, N.; Zhou, L.; Zhou, J. Synthesis and antitumor activity of novel mustard-linked chalcones. Arch. Pharm. 2013, 346, 292–299, doi:10.1002/ardp.201200443.
[10]  Kamal, A.; Kashi Reddy, M.; Viswanath, A. The design and development of imidazothiazole-chalcone derivatives as potential anticancer drugs. Expert Opin. Drug Discov. 2013, 8, 289–304, doi:10.1517/17460441.2013.758630.
[11]  Neves, M.P.; Lima, R.T.; Choosang, K.; Pakkong, P.; de S?o José Nascimento, M.; Vasconcelos, M.H.; Pinto, M.; Silva, A.M.; Cidade, H. Synthesis of a natural chalcone and its prenyl analogs—Evaluation of tumor cell growth-inhibitory activities, and effects on cell cycle and apoptosis. Chem. Biodivers. 2012, 9, 1133–1143, doi:10.1002/cbdv.201100190.
[12]  Shin, S.Y.; Yoon, H.; Ahn, S.; Kim, D.W.; Kim, S.H.; Koh, D.; Lee, Y.H.; Lim, Y. Chromenylchalcones showing cytotoxicity on human colon cancer cell lines and in siloco docking with aurora kinases. Bioorg. Med. Chem. 2013, 21, 4250–4258, doi:10.1016/j.bmc.2013.04.086.
[13]  De Vasconcelos, A.; Campos, V.F.; Nedel, F.; Seixas, F.K.; Dellagostin, O.A.; Smith, K.R.; de Pereira, C.M.; Stefanello, F.M.; Collares, T.; Barschak, A.G. Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetylthiophene on human colon adenocarcinoma cells. Cell Biochem. Funct. 2013, 31, 289–297.
[14]  Forejtníková, H.; Lunerová, K.; Kubínová, R.; Jankovská, D.; Marek, R.; Such?, V.; Vondrácek, J. Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Toxicology 2005, 208, 81–93, doi:10.1016/j.tox.2004.11.011.
[15]  Waalkens-Berendsen, D.H.; Kuilman-Wahls, M.E.; B?r, A. Embryotoxicity and teratogenicity study with neohesperidin dihydrochalcone in rats. Regul. Toxicol. Pharmacol. 2004, 40, 74–79, doi:10.1016/j.yrtph.2004.05.007.
[16]  Ohkatsu, Y.; Satoh, T. Antioxidant and photo-antioxidant activities of chalcone derivatives. J. Jpn. Pet. Inst. 2008, 51, 298–308, doi:10.1627/jpi.51.298.
[17]  Karki, R.; Thapa, P.; Kang, M.J.; Jeong, T.C.; Nam, J.M.; Kim, H.L.; Na, Y.; Cho, W.J.; Kwon, Y.; Lee, E.S. Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorg. Med. Chem. 2010, 18, 3066–3077, doi:10.1016/j.bmc.2010.03.051.
[18]  Kurniadewi, F.; Juliawaty, L.D.; Syah, Y.M.; Achmad, S.A.; Hakim, E.H.; Koyama, K.; Kinoshita, K.; Takahashi, K. Phenolic compounds from Cryptocarya konishii: Their cytotoxic and tyrosine kinase inhibitory properties. J. Nat. Med. 2010, 64, 121–125, doi:10.1007/s11418-009-0368-y.
[19]  Qian, Y.P.; Shang, Y.J.; Teng, Q.F.; Chang, J.; Fan, G.J.; Wei, X.; Li, R.R.; Li, H.P.; Yao, X.J.; Dai, F.; et al. Hydroxychalcones as potent antioxidants: Structure-activity relationship analysis and mechanism considerations. Food Chem. 2011, 126, 241–248, doi:10.1016/j.foodchem.2010.11.011.
[20]  Moorthy, N.S.H.N.; Singh, R.J.; Singh, H.P.; Gupta, S.D. Synthesis, biological evaluation and in silico metabolic and toxicity prediction of some flavanone derivatives. Chem. Pharm. Bull. 2006, 54, 1384–1390, doi:10.1248/cpb.54.1384.
[21]  Karki, R.; Thapa, P.; Yoo, H.Y.; Kadayat, T.M.; Park, P.H.; Na, Y.; Lee, E.; Jeon, K.H.; Cho, W.J.; Choi, H.; et al. Dihydroxylated 2,4,6-triphenyl pyridines: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study. Eur. J. Med. Chem. 2012, 49, 219–228, doi:10.1016/j.ejmech.2012.01.015.
[22]  Westerfield, M. The Zebrafish Book, 3rd ed. ed.; University of Oregon Press: Eugene, OR, USA, 1995.
[23]  Chen, Y.H.; Wang, Y.H.; Yu, T.H.; Wu, H.J.; Pai, C.W. Transgenic zebrafish line with over-expression of Hedgehog on the skin: A useful tool to screen Hedgehog-inhibiting compounds. Transgenic Res. 2009, 18, 855–864, doi:10.1007/s11248-009-9275-y.
[24]  Wang, Y.H.; Cheng, C.C.; Lee, W.J.; Chiou, M.L.; Pai, C.W.; Wen, C.C.; Chen, W.L.; Chen, Y.H. A novel phenotype-based approach for systematically screening antiproliferation metallodrugs. Chem. Biol. Interact. 2009, 182, 84–91, doi:10.1016/j.cbi.2009.08.005.
[25]  Kimmel, C.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development in the zebrafish. Dev. Dyn. 1995, 203, 253–310, doi:10.1002/aja.1002030302.
[26]  Chen, Y.H.; Lin, Y.T.; Lee, G.H. Novel and unexpected functions of zebrafish CCAAT box binding transcription factor (NF-Y) B subunit during cartilages development. Bone 2009, 44, 777–784, doi:10.1016/j.bone.2009.01.374.
[27]  Lee, G.H.; Chang, M.Y.; Hsu, C.H.; Chen, Y.H. Essential roles of basic helix-loop-helix transcription factors, Capsulin and Musculin, during craniofacial myogenesis of zebrafish. Cell Mol. Life Sci. 2011, 68, 4065–4078, doi:10.1007/s00018-011-0637-2.
[28]  Chen, Y.H.; Chang, C.Y.; Wang, Y.H.; Wen, C.C.; Chen, Y.C.; Hu, S.C.; Yu, D.S.; Chen, Y.H. Embryonic exposure to diclofenac disturbs actin organization and leads to myofibril misalignment. Birth Defects Res. B Dev. Reprod. Toxicol. 2011, 92, 139–147, doi:10.1002/bdrb.20292.
[29]  Ding, Y.J.; Chen, Y.H. Developmental nephrotoxicity of aristolochic acid in a zebrafish model. Toxicol. Appl. Pharmacol. 2012, 261, 59–65, doi:10.1016/j.taap.2012.03.011.
[30]  Chen, Y.H.; Tsai, H.J. Treatment with myf5-morpholino results in somite patterning and brain formation defects in zebrafish. Differentiation 2002, 70, 447–456, doi:10.1046/j.1432-0436.2002.700807.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133