Historically, biophysical studies of nucleic acids have been carried out under near ideal conditions, i.e., low buffer concentration (e.g., 10 mM phosphate), pH 7, low ionic strength (e.g., 100 mM) and, for optical studies, low concentrations of DNA (e.g., 1 × 10 ?6 M). Although valuable structural and thermodynamic data have come out of these studies, the conditions, for the most, part, are inadequate to simulate realistic cellular conditions. The increasing interest in studying biomolecules under more cellular-like conditions prompted us to investigate the effect of osmotic stress on the structural and thermodynamic properties of DNA oligomers containing the human telomere sequence (TTAGGG). Here, we report the characterization of (TTAGGG) 4 in potassium phosphate buffer with increasing percent PEG (polyethylene glycol) or acetonitrile. In general, the presence of these cosolutes induces a conformational change from a unimolecular hybrid structure to a multimolecular parallel stranded structure. Hence, the structural change is accompanied with a change in the molecularity of quadruplex formation.
References
[1]
Watson, J.D.; Crick, F.H.C. Molecular structure of nucleic acids—A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738, doi:10.1038/171737a0.
[2]
Pohl, F.M.; Jovin, T.M. Salt-induced co-operative conformational change of synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC). J. Mol. Biol. 1972, 67, 375–396, doi:10.1016/0022-2836(72)90457-3.
[3]
Williamson, J.R. G-Tetrad structures in telomeric DNA. Ann. Rev. Biophys. Biomol. Struct. 1994, 23, 703–730, doi:10.1146/annurev.bb.23.060194.003415.
[4]
Venczel, E.A.; Sen, D. Parallel and antiparallel G-DNA structures from a complex telomeric sequence. Biochemistry 1993, 32, 6220–6228, doi:10.1021/bi00075a015.
Wang, Y.; Patel, D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1993, 1, 263–282, doi:10.1016/0969-2126(93)90015-9.
[7]
Ambrus, A.; Chen, D.; Dai, J.; Bialis, T.; Jones, R.; Yang, D. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex with mixed parallel/antiparallel strands in potassium solution. Nucleic Acid. Res. 2006, 34, 2723–2735, doi:10.1093/nar/gkl348.
[8]
Luu, K.N.; Phan, A.T.; Kuryavyi, V.; Lacroix, L.; Patel, D. Structure of the human telomere in K+solution: An intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. Soc. 2006, 128, 9963–9970.
[9]
Xu, Y.; Noguchi, Y.; Sugiyama, H. The new models of the human telomere d [AGGG(TTAGGG)3] in K+ solution. Bio-Org. Med. Chem. 2006, 14, 5584–5591, doi:10.1016/j.bmc.2006.04.033.
[10]
Phan, A.T.; Kuryavyi, V.; Luu, K.N.; Patel, D.J. Structure of two intramolecular G-quadruplexes formed by the natural human telomere sequence in K+ solution. Nucleic Acid. Res. 2007, 35, 6517–6525, doi:10.1093/nar/gkm706.
[11]
Lim, K.W.; Amrane, S.; Bouaziz, S.; Xu, W.; Mu, Y.; Patel, D.J.; Luu, K.N.; Kim, N.; Phan, A.T. Structure of the human telomere in K+ solution: A stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc. 2009, 131, 4301–4309, doi:10.1021/ja807503g.
[12]
Kuryavyi, V.; Patel, D. Solution structure of a unique G-quadruplex scaffold adopted by a guanosine-rich human intronic sequence. Structure 2010, 18, 73–82, doi:10.1016/j.str.2009.10.015.
[13]
Zhang, Z.; Dai, J.; Veliath, E.; Jones, R.A.; Yang, D. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution. Nucleic Acid. Res. 2010, 38, 1009–1021, doi:10.1093/nar/gkp1029.
[14]
Viglasky, V.; Bauer, L.; Tluckova, K. Structural features of intra- and intermolecular G-quadruplexes derived from the human telomere. Biochemistry 2010, 49, 2110–2120, doi:10.1021/bi902099u.
Balkwill, G.D.; Garner, T.P.; Searle, M.S. Folding of single-stranded DNA quadruplexes containing an autonomously stable mini-hairpin loop. Mol. BioSyst. 2009, 5, 542–547, doi:10.1039/b900540d.
[18]
Olsen, C.M.; Marky, L. Monitoring the temperature unfolding of G-quadruplexes by UV and circular dichroism spectroscopies and calorimetry techniques. Methods Mol. Biol. 2010, 608, 147–158, doi:10.1007/978-1-59745-363-9_10.
[19]
Antonacci, C.; Chaires, J.B.; Sheardy, R.D. Biophysical characterization of the human telomeric repeat (TTAGGG)4 in potassium solution. Biochemistry 2007, 46, 4654–4660, doi:10.1021/bi602511p.
[20]
Yadav, D.; Sheardy, R.D. A single base permutation in any loop of a folded intramolecular quadruplex influences its structure and stability. J. Biophys. Chem. 2012, 3, 341–347, doi:10.4236/jbpc.2012.34042.
[21]
Tucker, B.A.; Gabriel, S.; Sheardy, R.D. A CD Spectroscopic Investigation of Inter- and Intramolecular DNA Quadruplexes. In Frontiers in Nucleic Acids; Sheardy, R.D., Winkle, S.A., Eds.; ACS Symposium Books: Washington, DC, USA, 2011.
[22]
Miyoshi, D.; Nakao, A.; Sugimoto, N. Molecular crowding regulates the structural switch of the DNA G-quadruplex. Biochemistry 2002, 41, 15017–15024, doi:10.1021/bi020412f.
[23]
Xue, Y.; Kan, Z.-Y.; Wang, Q.; Yao, Y.; Liu, J.; Hao, Y.-H.; Tan, Z. Human telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding condition. J. Am. Chem. Soc. 2007, 129, 11185–11191.
[24]
Petraccone, L.; Malafronte, A.; Amato, J.; Giancola, C. G-Quadruplexes from human telomeric DNA: How many conformations in PEG containing solutions? J. Phys. Chem. 2012, 116, 2294–2305.
[25]
Zheng, K.-W.; Chen, Z.; Hao, Y.-H.; Tan, Z. Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acid. Res. 2009, 38, 327–338, doi:10.1093/nar/gkp898.
[26]
Zhang, D.-H.; Fujimoto, T.; Saxena, S.; Yu, H.-Q.; Miyoshi, D.; Sugimoto, N. Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry 2010, 49, 4554–4563, doi:10.1021/bi1002822.
[27]
Heddi, B.; Phan, A.T. Structure of human telomeric DNA in crowded solution. J. Am. Chem. Soc. 2011, 133, 9824–9833, doi:10.1021/ja200786q.
[28]
Fujimoto, T.; Nakano, S.-I.; Sugimoto, N.; Miyoshi, D. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions. J. Phys. Chem. 2012, 117, 963–972.
[29]
Yu, H.; Gu, X.; Nakano, S.-I.; Miyoshi, D.; Sugimoto, N. Beads-on-a-string structure of long telomeric DNAs under molecular crowding condition. J. Am. Chem. Soc. 2012, 134, 20060–20069, doi:10.1021/ja305384c.
[30]
Knowles, D.B.; LaCroix, A.S.; Deines, N.F.; Shkel, I.; Record, M.T., Jr. Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proc. Natl. Acad. Sci. USA 2011, 108, 12699–12704, doi:10.1073/pnas.1103382108.
Zhou, H.-X.; Rivas, G.; Minton, A.P. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Ann. Rev. Biophys. 2008, 37, 375–397, doi:10.1146/annurev.biophys.37.032807.125817.
[33]
Elcock, A.H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiments. Curr. Opin. Struct. Biol. 2010, 20, 196–206, doi:10.1016/j.sbi.2010.01.008.
[34]
Hirano, A.; Shiraki, K.; Arakawa, T. Polyethylene glycol behaves like weak organic solvent. Biopolymers 2012, 97, 117–122, doi:10.1002/bip.21708.
[35]
Petraconne, L.; Pagano, B.; Giancola, C. Studying the effect of crowding and dehydration on DNA G-quadruplexes. Methods 2012, 57, 76–83, doi:10.1016/j.ymeth.2012.02.011.
[36]
Nakano, S.-I.; Yamaguchi, D.; Tateishi-Karimata, H.; Miyoshi, D.; Sugimoto, N. Hydration changes upon DNA folding studied by osmotic stress experiments. Biophys. J. 2012, 102, 2808–2817, doi:10.1016/j.bpj.2012.05.019.
[37]
Ruggiero, N.J.; Pereira De, S.F.; Colombo, M.F. Hydration effects on DNA double helix stability modulates ligand binding to natural DNA in response to changes in water activity. Cell Mol. Biol. 2001, 47, 801–814.
[38]
Priesler, R.S.; Chen, H.H.; Colombo, M.F.; Choe, Y.; Short, B.J., Jr.; Rau, D.C. The B form to Z form transition of poly(dG-m5dC) is sensitive to neutral solutes through osmotic stress. Biochemistry 1995, 34, 14400–14407, doi:10.1021/bi00044a017.
[39]
Miller, M.C.; Buscaglia, R.; Chaires, J.B.; Lane, A.N.; Trent, J.O. Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3’sequence of d(AG3(TTAG3)3). J. Am. Chem. Soc. 2010, 132, 17105–17107, doi:10.1021/ja105259m.
[40]
Balasubramanian, S.; Hurley, L.H.; Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Dis. 2011, 10, 261–275, doi:10.1038/nrd3428.
[41]
Duchler, M. G-quadruplexes: Targets and tools in anticancer drug design. J. Drug Target. 2012, 20, 389–400, doi:10.3109/1061186X.2012.669384.
[42]
Bidzinska, J.; Cimino-Reale, G.; Zaffaroni, N.; Folini, M. G-quadruplex structures in the human genome as novel therapeutic targets. Molecules 2012, 18, 12368–12395.
[43]
Miller, K.M.; Rodriguez, R. G-quadruplexes: Selective DNA targeting for cancer therapeutics? Expert Rev. Clin. Pharmacol. 2011, 4, 139–142, doi:10.1586/ecp.11.4.
[44]
Wong, H.M.; Payet, L.; Huppert, J.L. Function and targeting of G-quadruplexes. Curr. Opin. Mol. Ther. 2009, 11, 146–155.
[45]
Balagurumoorthy, P.; Brahmachari, S.K.; Mohanty, D.; Bansal, M.; Sassisekharan, V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 1992, 20, 4061–4067, doi:10.1093/nar/20.15.4061.
[46]
Marotta, S.P.; Tamburri, P.A.; Sheardy, R.D. Sequence and environmental effects on the self-assembly of DNA oligomers possessing GxT2Gy segments. Biochemistry 1996, 35, 10484–10492, doi:10.1021/bi960979u.
[47]
Dai, T.-Y.; Marotta, S.P.; Sheardy, R.D. Self-assembly of DNA oligomers into high molecular weight species. Biochemistry 1995, 34, 3655–3662, doi:10.1021/bi00011a021.
[48]
Sen, D.; Gilbert, W. Superstructures formed by telomere like oligomers. Biochemistry 1992, 31, 65–70, doi:10.1021/bi00116a011.
[49]
Marsh, T.C.; Henderson, E. G-Wires: Self-assembly of a telomeric oligonucleotide, d(GGGTTGGG), into large superstructures. Biochemistry 1994, 33, 10718–10724, doi:10.1021/bi00201a020.
[50]
Shi, Y.; Luo, Q.; Li, N.B. A highly sensitive resonance Rayleigh scattering method to discriminate a parallel-stranded G-quadruplex from DNA with other topologies and structures. Chem. Commun. 2013, 49, 6209–6211, doi:10.1039/c3cc42140f.