全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Molecules  2014 

[15]aneN4S: Synthesis, Thermodynamic Studies and Potential Applications in Chelation Therapy

DOI: 10.3390/molecules19010550

Keywords: macrocyclic compounds, thiatetraaza, stability constants, spectroscopic studies, chelation therapy, mercury(II) chelator, copper(II) chelator

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this work was to synthesize and characterize the thiatetraaza macrocycle 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN 4S). Its acid-base behaviour was studied by potentiometry at 25 °C and ionic strength 0.10 M in KNO 3. The protonation sequence of this ligand was investigated by 1H-NMR titration that also allowed the determination of protonation constants in D 2O. Binding studies of [15]aneN 4S with Mn 2+, Fe 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+, Cd 2+, Hg 2+ and Pb 2+ metal ions were further performed under the same experimental conditions. The results demonstrated that this compound has a higher selectivity and thermodynamic stability for Hg 2+ and Cu 2+, followed by Ni 2+. The UV-visible-near IR spectroscopies and magnetic moment data for the Co(II) and Ni(II) complexes indicated a tetragonal distorted coordination geometry for both metal centres. The value of magnetic moment and the X-band EPR spectra of the Cu(II) complex are consistent with a distorted square pyramidal geometry.

References

[1]  Hayes, R.B. The carcinogenicity of metals in humans. Cancer Cause. Control 1997, 8, 371–385, doi:10.1023/A:1018457305212.
[2]  J?rup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182, doi:10.1093/bmb/ldg032.
[3]  Caussy, D.; Gochfeld, M.; Gurzau, E.; Neagu, C.; Ruedel, H. Lessons from case studies of metals: Investigating exposure, Bioavailability, and risk. Ecotoxicol. Environ. Saf. 2003, 56, 45–51, doi:10.1016/S0147-6513(03)00049-6.
[4]  Blanu?a, M.; Varnai, V.M.; Piasek, M.; Kostial, K. Chelators as antidotes of metal toxicity: Therapeutic and experimental aspects. Curr. Med. Chem. 2005, 12, 2771–2794, doi:10.2174/092986705774462987.
[5]  Flora, S.J.S.; Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health 2010, 7, 2745–2788, doi:10.3390/ijerph7072745.
[6]  Sears, M.E. Chelation: Harnessing and enhancing heavy metal detoxification—A review. Sci. World J. 2013, 2013, 1–13, doi:10.1155/2013/219840.
[7]  Fernandes, A.S.; Cabral, M.F.; Costa, J.; Castro, M.; Delgado, R.; Drew, M.G.; Felix, V. Two macrocyclic pentaaza compounds containing pyridine evaluated as novel chelating agents in copper(II) and nickel(II) overload. J. Inorg. Biochem. 2011, 105, 410–419, doi:10.1016/j.jinorgbio.2010.11.014.
[8]  Andersen, O.; Aaseth, J. Molecular mechanisms of in vivo metal chelation: Implications for clinical treatment of metal intoxications. Environ. Health. Perspect. 2002, 110, 887–890, doi:10.1289/ehp.02110s5887.
[9]  Andersen, O. Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini Rev. Med. Chem. 2004, 4, 11–21, doi:10.2174/1389557043487583.
[10]  Aposhian, H.V.; Maiorino, R.M.; Gonzalez-Ramirez, D.; Zuniga-Charles, M.; Xu, Z.; Hurlbut, K.M.; Junco-Munoz, P.; Dart, R.C.; Aposhian, M.M. Mobilization of heavy metals by newer, Therapeutically useful chelating agents. Toxicology 1995, 97, 23–38, doi:10.1016/0300-483X(95)02965-B.
[11]  Gon?alves, S.; Fernandes, A.S.; Oliveira, N.G.; Marques, J.; Costa, J.; Cabral, M.F.; Miranda, J.; Cipriano, M.; Guerreiro, P.S.; Castro, M. Cytotoxic effects of cadmium in mammary epithelial cells: Protective role of the macrocycle [15]pyN5. Food Chem. Toxicol. 2012, 50, 2180–2187, doi:10.1016/j.fct.2012.04.006.
[12]  Mewis, R.E.; Archibald, S. Biomedical applications of macrocyclic ligand complexes. Coord. Chem. Rev. 2010, 254, 1686–1712, doi:10.1016/j.ccr.2010.02.025.
[13]  Hancock, R.D.; Martell, A.E. Ligand design for selective complexation of metal ions in aqueous solution. Chem. Rev. 1989, 89, 1875–1914, doi:10.1021/cr00098a011.
[14]  Hancock, R.D.; Dobson, S.M.; Boeyens, J.C.A. Metal ion size selectivity of 1-Thia-4, 7-diazacyclononane (9-aneN2S), and other tridentate macrocycles. A study by molecular mechanics calculation, structure determination, and formation constant determination of complexes of 9-aneN2S. Inorganica Chim. Acta 1987, 133, 221–231, doi:10.1016/S0020-1693(00)87770-1.
[15]  Westerby, B.C.; Juntunen, K.L.; Leggett, G.H.; Pett, V.B.; Koenigbauer, M.J.; Purgett, M.D.; Taschner, M.J.; Ochrymowycz, L.A.; Rorabacher, D.B. Macrocyclic polyamino polythiaether ligands with NxS4-x and NxS5-x donor sets: Protonation constants, stability constants, and kinetics of complex formation with the aquocopper(II) ion. Inorg. Chem. 1991, 30, 2109–2120, doi:10.1021/ic00009a030.
[16]  Arnaud-Neu, F.; Schwing-Weill, M.J.; Louis, R.; Weiss, R. Thermodynamic and spectroscopic properties in aqueous solutions of pentadentate macrocyclic complexes. Inorg. Chem. 1979, 18, 2956–2961, doi:10.1021/ic50201a003.
[17]  Balakrishnan, K.P.; Kaden, T.A.; Siegfried, L.; Zuberbühler, A.D. Stabilities and redox properties of Cu(I) and Cu(II) complexes with macrocyclic ligands containing the N2S2 donor set. Helv. Chim. Acta 1984, 67, 1060–1069, doi:10.1002/hlca.19840670419.
[18]  Walker, T.L.; Malasi, W.; Bhide, S.; Parker, T.; Zhang, D.; Freedman, A.; Modarelli, J.M.; Engle, J.T.; Ziegler, C.J.; Custer, P.; et al. Synthesis and characterization of 1,8-dithia-4,11-diazacyclotetradecane. Tetrahedron Lett. 2012, 53, 6548–6551, doi:10.1016/j.tetlet.2012.09.088.
[19]  Papini, G.; Alidori, S.; Lewis, J.S.; Reichert, D.E.; Pellei, M.; Lobbia, G.G.; Biddlecombe, G.B.; Anderson, C.J.; Santini, C. Synthesis and characterization of the copper(II) complexes of new N2S2-donor macrocyclic ligands: Synthesis and in vivo evaluation of the 64Cu complexes. Dalton Trans. 2009, 7, 177–184.
[20]  Aquilanti, G.; Giorgetti, M.; Minicucci, M.; Papini, G.; Pellei, M.; Tegoni, M.; Trasatti, A.; Santini, C. A study on the coordinative versatility of new N,S-donor macrocyclic ligands: XAFS, and Cu2+ complexation thermodynamics in solution. Dalton Trans. 2011, 40, 2764–2777, doi:10.1039/c0dt01401j.
[21]  Kodama, M.; Koike, T.; Hoshiga, N.; Machida, R.; Kimura, E. Metal chelates of sulphur-containing polyamine macrocycles and oxygenation of the corresponding cobalt(II) complexes. J. Chem. Soc. Dalton Trans. 1984, 673–678.
[22]  Vollhardt, K.P.C.; Schore, N.E. Organic Chemistry, 6th ed. ed.; Freeman and Co.: New York, NY, USA, 2011.
[23]  Tabushi, I.; Okino, H.; Kuroda, Y. Convenient synthesis of macrocyclic-compounds containing two of nitrogen, Oxygen or sulphur atoms. Tetrahedron Lett. 1976, 17, 4339–4342, doi:10.1016/0040-4039(76)80110-4.
[24]  Steenland, M.W.A.; Westbroek, P.; Dierck, I.; Herman, G.G.; Lippens, W.; Temmerman, E.; Goeminne, A.M. Aqueous solution study of Cu(II) and Ni(II) complexes of macrocyclic oxa- and thia- containing trans-dioxo-tetraamines. Polyhedron 1999, 18, 3417–3424.
[25]  Bencini, A.; Bianchi, A.; Garcia-Espa?a, E.; Micheloni, M.; Ramirez, J.A. Proton coordination by polyamine compounds in aqueous solution. Coord. Chem. Rev. 1999, 188, 97–156, doi:10.1016/S0010-8545(98)00243-4.
[26]  Cabral, M.F.; Delgado, R. Metal complexes of pentadentate macrocyclic ligands containing oxygen and nitrogen as donor atoms. Helv. Chim. Acta 1994, 77, 515–524, doi:10.1002/hlca.19940770212.
[27]  Motekaitis, R.J.; Rogers, B.E.; Reichert, D.E.; Martell, A.E.; Welch, M.J. Stability and structure of activated macrocycles. Ligands with biological applications. Inorg. Chem. 1996, 35, 3821–3827, doi:10.1021/ic960067g.
[28]  Delgado, R.; Fraústo da Silva, J.J.R.; Amorim, M.T.S.; Cabral, M.F.; Chaves, S.; Costa, J. Dissociation constants of Br?nsted acids in D2O and H2O: Studies on polyaza and polyoxa-polyaza macrocycles and a general correlation. Anal. Chim. Acta 1991, 245, 271–282.
[29]  Hancock, R.D.; Wade, P.W.; Ngwenya, M.P.; de Sousa, A.S.; Damu, K.V. Ligand design for complexation in aqueous solution. 2. Chelate ring size as a basis for control of size-based selectivity for metal ions. Inorg. Chem. 1990, 29, 1968–1974, doi:10.1021/ic00335a039.
[30]  Riley, D.P.; Henke, S.L.; Lennon, P.J.; Weiss, R.H.; Neumann, W.L.; Rivers, W.J., Jr.; Aston, K.W.; Sample, K.R.; Rahman, H.; Ling, C.S.; et al. Synthesis, characterization, and stability of manganese(II) C-substituted 1,4,7,10,13-pentaazacyclopentadecane complexes exhibiting superoxide dismutase activity. Inorg. Chem. 1996, 35, 5213–5231, doi:10.1021/ic960262v.
[31]  Kodama, M.; Kimura, E. Effects of axial ligation on molecular oxygen binding by donor atoms built in saturated macrocycles. Equilibrium and kinetic study with cobalt(II) complexes of macrocyclic pentaamines and oxatetraamine. Inorg. Chem. 1980, 19, 1871–1875, doi:10.1021/ic50209a010.
[32]  Kodama, M.; Kimura, E.; Yamaguchi, S. Complexation of the macrocyclic hexa-amine ligand 1,4,7,10,13,16-hexa-azacyclo-octadecane(“18-azacrown-6”). J. Chem. Soc. Dalton Trans. 1980, 2536–2538, doi:10.1039/dt9800002536.
[33]  Kodama, M.; Kimura, E. Equilibria of complex formation between several bivalent metal ions and macrocyclic tri- and penta-amines. J. Chem. Soc. Dalton Trans. 1978, 1081–1085, doi:10.1039/dt9780001081.
[34]  Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753, doi:10.1016/0039-9140(96)01958-3.
[35]  Kodama, M.; Kimura, E. Effects of cyclization and ring size on complex formation between penta-amine ligands and copper(II). J. Chem. Soc. Dalton Trans. 1978, 104–110, doi:10.1039/dt9780000104.
[36]  Costa, J.; Delgado, R.; Drew, M.G.B.; Félix, V. Design of selective macrocyclic ligands for the divalent first-row transition-metal ions. J. Chem. Soc. Dalton Trans. 1998, 1063–1071.
[37]  Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318, doi:10.1016/S0010-8545(98)00260-4.
[38]  Evans, D.F. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003–2005, doi:10.1039/jr9590002003.
[39]  Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed. ed.; Elsevier: Amsterdam, The Netherlands, 1984.
[40]  Banci, L.; Bencini, A.; Benelli, C.; Gatteschi, D.; Zanchini, C. Spectral-structural correlations in high-spin cobalt(II) complexes. Sruct. Bond. 1982, 52, 37–86.
[41]  Bertini, I.; Luchinat, C. High spin cobalt(II) as a probe for the investigation of metalloproteins. Adv. Inorg. Biochem. 1984, 6, 71–111.
[42]  Martin, L.Y.; Sperati, C.R.; Busch, D.H. The spectrochemical properties of tetragonal complexes of high spin nickel(II) containing macrocyclic ligands. J. Am. Chem. Soc. 1977, 99, 2968–2981, doi:10.1021/ja00451a020.
[43]  Sacconi, L.; Mani, F.; Bencini, A. Nickel. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R.D., McCleverty, J.A., Eds.; Pergamon Press: Oxford, UK, 1987; pp. 1–137.
[44]  Neese, F. Electronic Structure and Spectroscopy of Novel Copper Chromophores in Biology. Diploma Thesis, University of Konstanz, Konstanz, Germany, June 1993.
[45]  Fernandes, A.S.; Gaspar, J.; Cabral, M.F.; Caneiras, C.; Guedes, R.; Rueff, J.; Castro, M.; Costa, J.; Oliveira, N.G. Macrocyclic copper(II) complexes: Superoxide scavenging activity, Structural studies and cytotoxicity evaluation. J. Inorg. Biochem. 2007, 101, 849–858, doi:10.1016/j.jinorgbio.2007.01.013.
[46]  Li, Y. X-Ray structures and spectroscopic studies of diaqua- and dichlorocopper(II) complexes of 15 crown 5 and 4' substituted benzo-15-Crown-5 with a 3dx(x=z2) ground state doublet. Bull. Chem. Soc. Jpn. 1996, 69, 2513–2523, doi:10.1246/bcsj.69.2513.
[47]  Barbaro, P.; Bianchini, C.; Capannesi, G.; di Luca, L.; Laschi, F.; Petroni, D.; Salvadori, P.A.; Vacca, A.; Vizza, F. Synthesis and characterization of the tetraazamacrocycle 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (H2Me2DO2A) and of its neutral copper(II) complex [Cu(Me2DO2A)]. A new 64Cu-labeled macrocyclic complex for positron emission tomography imaging. J. Chem. Soc. Dalton Trans. 2000, 2393–2401.
[48]  Hathaway, B.J. Copper. Coord. Chem. Rev. 1983, 52, 87–169, doi:10.1016/0010-8545(83)85019-X.
[49]  Gersmann, H.R.; Swalen, J.D. Electron paramagnetic resonance spectra of copper complexes. J. Chem. Phys. 1962, 36, 3221–3233, doi:10.1063/1.1732450.
[50]  Yokoi, H.; Sai, M.; Isobe, T.; Ohsawa, S. ESR studies of the copper(II) complexes of amino acids. Bull. Chem. Soc. Jpn. 1972, 45, 2189–2195, doi:10.1246/bcsj.45.2189.
[51]  Lau, P.W.; Lin, W.C. Electron spin resonance and electronic structure of some metalloporphyrins. J. Inorg. Nucl. Chem. 1975, 37, 2389–2398.
[52]  Perrin, D.D.; Armarego, W.L.F. Purification of Laboratory Chemicals, 3rd ed. ed.; Pergamon Press: Oxford, UK, 1988.
[53]  Schwarzenbach, G.; Flaschka, W. Complexometric Titrations, 2nd ed. ed.; Methuen & Co: London, UK, 1969.
[54]  Rossotti, F.J.C.; Rossotti, H. Potentiometric titrations using Gran plots: A textbook omission. J. Chem. Educ. 1965, 42, 375–378, doi:10.1021/ed042p375.
[55]  Delgado, R.; do Carmo Figueira, M.; Quintino, S. Redox method for the determination of stability constants of some trivalent metal complexes. Talanta 1997, 45, 451–462, doi:10.1016/S0039-9140(97)00157-4.
[56]  Pettit, L.D.; Powell, H.K.J. IUPAC Stability Constants Database; Academic Software: Timble, Otley, Yorks, UK, 2003.
[57]  Frassineti, C.; Ghelli, S.; Gans, P.; Sabatini, A.; Moruzzi, M.S.; Vacca, A. Nuclear magnetic resonance as a tool for determining protonation constants of natural polyprotic bases in solution. Anal. Biochem. 1995, 231, 374–382, doi:10.1006/abio.1995.9984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133