Saccharide Substituted Zinc Phthalocyanines: Optical Properties, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging for Sentinel Lymph Nodes
Saccharide-substituted zinc phthalocyanines, [2,9(10),16(17),23(24)-tetrakis((1-(β-D-glucose-2-yl)-1 H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato]zinc(II) and [2,9(10), 16(17),23(24)-tetrakis((1-(β-D-lactose-2-yl)-1 H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato] zinc(II), were evaluated as novel near infrared fluorescence agents. Their interaction with bovine serum albumin was investigated by fluorescence and circular dichroism spectroscopy and isothermal titration calorimetry. Near infrared imaging for sentinel lymph nodes in vivo was performed using nude mice as models. Results show that saccharide- substituted zinc phthalocyanines have favourable water solubility, good optical stability and high emission ability in the near infrared region. The interaction of lactose-substituted phthalocyanine with bovine serum albumin displays obvious differences to that of glucose- substituted phthalocyanine. Moreover, lactose-substituted phthalocyanine possesses obvious imaging effects for sentinel lymph nodes in vivo.
References
[1]
Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589, doi:10.1038/nature06917.
[2]
Luker, G.D.; Luker, K.E. Optical imaging: Current applications and future directions. J. Nuclear Med. 2008, 49, 1–4, doi:10.2967/jnumed.107.045799.
[3]
Hilderbrand, S.A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79, doi:10.1016/j.cbpa.2009.09.029.
[4]
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 2010, 110, 2620–2640, doi:10.1021/cr900263j.
[5]
Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Fluorescence imaging in vivo: Recent advances. Curr. Opin. Biotechnol. 2007, 18, 17–25, doi:10.1016/j.copbio.2007.01.003.
Cheng, T.C.; Roffler, S.R.; Tzou, S.C.; Chuang, K.H.; Su, Y.C.; Chuang, C.H.; Leu, Y.L. An activity-based near-infrared glucuronide trapping probe for imaging β-glucuronidase expression in deep tissues. J. Am. Chem. Soc. 2012, 134, 3103–3110.
[8]
Keereweer, S.; Hutteman, M.; Kerrebijn, J.D.F.; van de Velde, C.L.J.H.; Vahrmeijer, A.; Lowik, C.W.G.M. Translational optical imaging in diagnosis and treatment of cancer. Curr. Pharm. Biotechnol. 2012, 13, 498–503, doi:10.2174/138920112799436294.
[9]
Crane, L.M.A.; Themelis, G.; Arts, H.J.G.; Buddingh, K.T.; Brouwers, A.H.; Ntziachristos, V.; van der Zee, A.G.J. Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: First clinical results. Gynecol. Oncol. 2011, 120, 291–295, doi:10.1016/j.ygyno.2010.10.009.
Troyan, S.L.; Frangioni, J.V. The FLARE? intraoperative near-infrared fluorescence imaging system: A first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 2009, 16, 2943–2952, doi:10.1245/s10434-009-0594-2.
[12]
Te Velde, E.A.; Veerman, T.; Subramaniam, V.; Ruers, T. The use of fluorescent dyes and probes in surgical oncology. Eur. J. Surg. Oncol. 2010, 36, 6–15, doi:10.1016/j.ejso.2009.10.014.
?amur, M.; Bulut, M.; Kandaz, M.; Güney, O. Synthesis, characterization and fluorescence behavior of new fluorescent probe phthalocyanines bearing coumarin substituents. Polyhedron 2009, 28, 233–238, doi:10.1016/j.poly.2008.10.066.
Choi, C.F.; Tsang, P.T.; Huang, J.D.; Chan, E.Y.; Ko, W.H.; Fong, W.P.; Ng, D.K. Synthesis and in vitro photodynamic activity of new hexadeca-carboxy phthalocyanines. Chem. Commun. 2004, 19, 2236–2237.
[18]
Soares, A.R.; Tomé, J.P.; Neves, M.G.; Tomé, A.C.; Cavaleiro, J.A.; Torres, T. Synthesis of water-soluble phthalocyanines bearing four or eight D-galactose units. Carbohydr. Res. 2009, 344, 507–510, doi:10.1016/j.carres.2008.12.009.
[19]
Aggarwal, A.; Singh, S.; Zhang, Y.; Anthes, M.; Samaroo, D.; Gao, R.; Drain, C.M. Synthesis and photophysics of an octathioglycosylated zinc (II) phthalocyanine. Tetrahedron Lett. 2011, 52, 5456–5459, doi:10.1016/j.tetlet.2011.08.028.
[20]
Choi, C.F.; Huang, J.D.; Lo, P.C.; Fong, W.P.; Ng, D.K. Glycosylated zinc (II) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Org. Biomol. Chem. 2008, 6, 2173–2181, doi:10.1039/b802212g.
[21]
Kimani, S.G.; Shmigol, T.A.; Hammond, S.; Phillips, J.B.; Bruce, J.I.; MacRobert, A.J.; Golding, J.P. Fully protected glycosylated Zinc (II) phthalocyanine shows high uptake and photodynamic cytotoxicity in MCF-7 cancer cells. Photochem. Photobiol. 2013, 89, 139–149, doi:10.1111/j.1751-1097.2012.01204.x.
[22]
Lv, F.; Li, Y.; Cao, B.; Liu, T. Galactose substituted zinc phthalocyanines as near infrared fluorescence probes for liver cancer imaging. J. Mater. Sci. Mater. Med. 2013, 24, 811–819, doi:10.1007/s10856-012-4820-2.
[23]
Lv, F.; He, X.; Lu, L.; Wu, L.; Liu, T. Synthesis, properties and near-infrared imaging evaluation of glucose conjugated zinc phthalocyanines via Click reaction. J. Por. Phthal. 2012, 16, 77–84, doi:10.1142/S1088424611004361.
[24]
Lv, F.; He, X.; Wu, L.; Liu, T. Lactose substituted zinc phthalocyanine: A near infrared fluorescence imaging probe for liver cancer targeting. Bioorg. Med. Chem. Lett. 2013, 23, 1878–1882, doi:10.1016/j.bmcl.2012.12.103.
[25]
Vuignier, K.; Schappler, J.; Veuthey, J.L.; Carrupt, P.A.; Martel, S. Drug-protein binding: A critical review of analytical tools. Anal. Bioanal. Chem. 2010, 398, 53–66, doi:10.1007/s00216-010-3737-1.
[26]
Su?kowska, A. Interaction of drugs with bovine and human serum albumin. J. Mol. Struct. 2002, 614, 227–232, doi:10.1016/S0022-2860(02)00256-9.
[27]
Peters, T., Jr. All about Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: Salt Lake City, UT, USA, 1995.
[28]
Alarcón, E.; Edwards, A.M.; Garcia, A.M.; Mu?oz, M.; Aspée, A.; Borsarelli, C.D.; Lissi, E.A. Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts. Photochem. Photobiol. Sci. 2009, 8, 255–263, doi:10.1039/b815726j.
Bi, S.; Sun, Y.; Qiao, C.; Zhang, H.; Liu, C. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study. J. Lumin. 2009, 129, 541–547, doi:10.1016/j.jlumin.2008.12.010.
[31]
Hein, C.D.; Liu, X.M.; Wang, D. Click chemistry, a powerful tool for pharmaceutical. Pharm. Res. 2008, 25, 2216–2230, doi:10.1007/s11095-008-9616-1.
[32]
Tron, G.C.; Pirali, T.; Billington, R.A.; Canonico, P.L.; Sorba, G.; Genazzani, AA. Click chemistry reactions in medicinal chemistry: Applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 2008, 28, 278–308, doi:10.1002/med.20107.
[33]
Lv, F.; Cao, B.; Cui, Y.; Liu, T. Zinc phthalocyanine labelled polyethylene glycol: Preparation, characterization, interaction with bovine serum albumin and near infrared fluorescence imaging in vivo. Molecules 2012, 17, 6348–6361, doi:10.3390/molecules17066348.
[34]
Joshi, P.; Chakraborty, S.; Dey, S.; Shanker, V.; Ansari, Z.A.; Singh, S.P.; Chakrabarti, P. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin. J. Colloid Interface Sci. 2011, 355, 402–409, doi:10.1016/j.jcis.2010.12.032.
[35]
Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102, doi:10.1021/bi00514a017.
[36]
Citrin, D.; Lee, A.K.; Scott, T.; Sproull, M.; Ménard, C.; Tofilon, P.J.; Kevin Camphausen, K. In vivo tumor imaging in mice with near-infrared labeled endostatin. Mol. Cancer Ther. 2004, 3, 481–488.
[37]
Meier, R.; Boddington, S.; Krug, C.; Acosta, F.L.; Thullier, D.; Henning, T.D.; Sutton, E.J.; Tavri, S.; Lotz, J.C.; Daldrup-Link, H.E. Detection of postoperative granulation tissue with an ICG-enhanced integrated OI-/X-ray System. J. Transl. Med. 2008, 6, 73–82, doi:10.1186/1479-5876-6-73.