5-Alkyl-6-(substituted benzyl)-2-thiouracils 3a, c were reacted with (2-chloroethyl) diethylamine hydrochloride to afford the corresponding 2-(2-diethylamino)ethylthiopyrimidin- 4(3 H)-ones 4a, b. Reaction of 3a– c with N-(2-chloroethyl)pyrrolidine hydrochloride and/or N-(2-chloroethyl)piperidine hydrochloride gave the corresponding 2-[2-(pyrrolidin-1-yl)ethyl]-thiopyrimidin-4(3 H)-ones 5a– c and 2-[2-(piperidin-1-yl)ethyl]thiopyrimidin-4(3 H)-ones 6a, b, respectively. Treatment of 3a– d with N-(2-chloroethyl)morpholine hydrochloride under the same reaction conditions formed the corresponding 2-[2-(morpholin-4-yl)ethyl]thiopyrimidines 6c– f. On the other hand, 3a, b were reacted with N-(2-bromoethyl)phthalimide and/or N-(3-bromopropyl)phthalimide to furnish the corresponding 2-[2-( N-phthalimido)ethyl]-pyrimidines 7a, b and 2-[3-( N-phthalimido)-propyl]pyrimidines 7c, d, respectively. Compounds 3a– d, 4a, b, 5a– c, 6a– f and 7a– d were screened against Gram-positive bacteria ( Staphylococcus aureus ATCC 29213, Bacillus subtilis NRRL 4219 and Bacillus cereus), yeast-like pathogenic fungus ( Candida albicans ATCC 10231) and a fungus ( Aspergillusniger NRRL 599). The best antibacterial activity was displayed by compounds 3a, 3b, 4a, 5a, 5b, 6d, 6f, 7b and 7d, whereas compounds 4b, 5b, 5c, 6a, 6b and 6f exhibited the best antifungal activity.
References
[1]
Mitsuya, H.; Yarchoan, R.; Broder, S. Molecular targets for AIDS therapy. Science 1990, 249, 1533–1544.
[2]
Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker, R.T.; Balzarini, J.; de Clercq, E. A novel lead for specific anti-HIV-1 agents: 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine. J. Med. Chem. 1989, 32, 2507–2509, doi:10.1021/jm00132a002.
[3]
Hopkins, A.L.; Ren, J.; Tanaka, H.; Baba, M.; Okamato, M.; Stuart, D.I.; Stammers, D.K. Design of MKC-442 (emivirine) analogues with improved activity against drug-resistant HIV mutants. J. Med. Chem. 1999, 42, 4500–4505.
[4]
Malik, V.; Singh, P.; Kumar, S. Unique chlorine effect in regioselective one-pot synthesis of 1-alkyl-/allyl-3-(o-chlorobenzyl) uracils: Anti-HIV activity of selected uracil derivatives. Tetrahedron 2006, 62, 5944–5951, doi:10.1016/j.tet.2006.04.018.
[5]
Gazivoda, T.; Raic-Malic, S.; Marjanovic, M.; Kralj, M.; Pavelic, K.; Balzarini, J.; de Clercq, E.; Mintas, M. The novel C-5 aryl, alkenyl and alkynyl substituted uracil derivatives of L-ascorbic acid: Synthesis, cytostatic, and antiviral activity evaluations. Bioorg. Med. Chem. 2007, 15, 749–758, doi:10.1016/j.bmc.2006.10.046.
[6]
Novikov, M.S.; Buckheit, R.W., Jr.; Temburnikar, K.; Khandazhinskaya, A.L.; Ivanov, A.V.; Seley-Radtke, K.L. 1-Benzyl derivatives of 5-(arylamino)uracils as anti-HIV-1 and anti-EBV agents. Bioorg. Med. Chem. 2010, 18, 8310–8314, doi:10.1016/j.bmc.2010.09.070.
Isobe, Y.; Tobe, M.; Inoue, Y.; Isobe, M.; Tsuchiya, M.; Hayashi, H. Structure and activity relationships of novel uracil derivatives as topical anti-inflammatory agents. Bioorg. Med. Chem. 2003, 11, 4933–4940, doi:10.1016/j.bmc.2003.09.012.
[11]
Evaldsson, C.; Ryden, I.; Uppugunduri, S. Anti-inflammatory effects of exogenous uridine in an animal model of lung inflammation. Inter. Immunopharmcol. 2007, 7, 1025–1032, doi:10.1016/j.intimp.2007.03.008.
[12]
Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett. 2012, 22, 3445–3448, doi:10.1016/j.bmcl.2012.03.092.
Singh, K.; Kaur, H.; Chibale, K.; Balzarini, J. Synthesis of 4-aminoquinoline-pyrimidine hybrids as potent antimalarials and their mode of action studies. Eur. J. Med. Chem. 2013, 66, 314–323, doi:10.1016/j.ejmech.2013.05.046.
[16]
Xie, F.; Zhao, H.; Zhao, L.; Lou, L.; Hu, Y. Synthesis and biological evaluation of novel 2,4,5-substituted pyrimidine derivatives for anticancer activity. Bioorg. Med. Chem. Lett. 2009, 19, 275–278.
[17]
El-Deeb, I.M.; Lee, S.H. Design and synthesis of new anticancer pyrimidines with multiple-kinase inhibitory effect. Bioorg. Med. Chem. 2010, 18, 3860–3874, doi:10.1016/j.bmc.2010.04.037.
[18]
Prachayasittikul, S.; Worachartcheewan, A.; Nantasenamat, C.; Chinworrungsee, M.; Sornsongkhram, N.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structure-activity relationship of 2-thiopyrimidine-4-one analogs as antimicrobial and anticancer agents. Eur. J. Med. Chem. 2011, 46, 738–742, doi:10.1016/j.ejmech.2010.12.009.
[19]
Tsoukala, E.; Agelis, G.; Dolinsek, J.; Botic, T.; Cencic, A.; Komiotis, D. An efficient synthesis of 3-fluoro-5-thio-xylofuranosyl nucleosides of thymine, uracil and 5-fluorouracil as potential antitumor or/and antiviral agents. Bioorg. Med. Chem. 2007, 15, 3241–3247, doi:10.1016/j.bmc.2007.02.031.
[20]
Manta, S.; Tsoukala, E.; Tzioumaki, N.; Kiritsis, C.; Balzarini, J.; Komiotis, D. Synthesis of 4,6-dideoxy-3-fluoro-β-d-glucopyranosyl analogues of 5-fluorouracil, N6-benzyl adenine, uracil, thymine, N4-benzoyl cytosine and evaluation of their antitumor activities. Bioorg Chem. 2010, 38, 48–55, doi:10.1016/j.bioorg.2009.11.001.
[21]
Lauria, A.; Patella, C.; Abbate, I.; Martorana, A.; Almerico, A.M. An unexpected Dimroth rearrangement leading to annelated thieno[3,2-d][1,2,3]triazolo[1,5-a]pyrimidines with potent antitumor activity. Eur. J. Med. Chem. 2013, 65, 381–388, doi:10.1016/j.ejmech.2013.05.012.
[22]
Matyugina, E.; Khandazhinskaya, A.; Chernousova, L.; Andreevskaya, S.; Smirnova, T.; Chizhov, A.; Karpenko, I.; Kochetkov, S.; Alexandrova, L. The synthesis and antituberculosis activity of 5'-nor carbocyclic uracil derivatives. Bioorg. Med. Chem. 2012, 20, 6680–6686, doi:10.1016/j.bmc.2012.09.019.
[23]
Tobe, M.; Isobe, Y.; Goto, Y.; Obara, F.; Tsuchiya, M.; Matsui, J.; Hirota, K.; Hayashi, H. Synthesis and biological evaluation of CX-659S and related compounds for their inhibitory effects on the delayed-type hypersensitivity reaction. Bioorg. Med. Chem. 2000, 8, 2037–2047, doi:10.1016/S0968-0896(00)00126-7.
[24]
Bhabak, K.P.; Bhowmick, D. Synthesis and structural characterization of some trisulfide analoges of thiouracil-based antithyroid drugs. J. Mol. Struct. 2012, 1022, 16–24, doi:10.1016/j.molstruc.2012.05.005.
Orr, G.F.; Musso, D.L.; Boswell, G.E.; Kelly, J.L.; Joyner, S.S.; Davis, S.T.; Baccanari, D.P. Inhibition of uridine phosphorylase: Synthesis and structure-activity relationships of aryl-substituted 5-benzyluracils and 1-[(2-hydroxyethoxy)methyl]-5-benzyluracils. J. Med. Chem. 1995, 38, 3850–3856, doi:10.1021/jm00019a015.
[32]
Murray, P.E.; McNally, V.A.; Lockyer, S.D.; Williams, K.J.; Stratford, I.J.; Jaffar, M.; Freeman, S. Synthesis and enzymatic evaluation of pyridinium-substituted uracil derivatives as novel inhibitors of thymidine phosphorylase. Bioorg. Med. Chem. 2002, 10, 525–530, doi:10.1016/S0968-0896(01)00309-1.
[33]
Focher, F.; Ubiali, D.; Pregnolato, M.; Zhi, C.; Gambino, J.; Wright, G.E.; Spadari, S. Novel nonsubstrate inhibitors of human thymidine phosphorylase, a potential target for tumor-dependent angiogenesis. J. Med. Chem. 2000, 43, 2601–2607, doi:10.1021/jm000037u.
[34]
El-Brollosy, N.R.; Al-Omar, M.A.; Al-Deeb, O.A.; El-Emam, A.A.; Nielsen, C. Synthesis of novel uracil non-nucleosides analogues of 3,4-dihydro-2-alkylthio-6-benzyl-4-oxopyrimidines and 6-benzyl-1-ethyloxymethyl-5-isopropyluracil. J. Chem. Res. 2007, 263–267.
[35]
El-Brollosy, N.R.; Jorgensen, P.T.; Dahan, B.; Boel, A.M.; Pedersen, E.B.; Nielsen, C. Synthesis of Novel N-1 (allyloxymethyl) Analogues of 6-Benzyl-1-(ethoxymethyl)-5-isopropyluracil (MKC-442, Emivirine) with Improved Activity Against HIV-1 and its Mutants. J. Med. Chem. 2002, 45, 5721–5726, doi:10.1021/jm020949r.
[36]
El-Brollosy, N.R.; Pedersen, E.B.; Nielsen, C. Synthesis of novel MKC-442 analogues with potent activities against HIV-1. Arch. Pharm. Pharm. Med. Chem. 2003, 336, 236–241, doi:10.1002/ardp.200300742.
[37]
El-Essawy, F.A.; El-Brollosy, N.R.; Pedersen, E.B.; Nielsen, C. Synthesis of new uracil non-nucleoside derivatives as potential inhibitors of HIV-1. J. Heterocyl. Chem. 2003, 40, 213–217, doi:10.1002/jhet.5570400203.
[38]
Wamberg, M.; Pedersen, E.B.; El-Brollosy, N.R.; Nielsen, C. Synthesis of 6-arylvinyl analogues of the HIV drugs SJ-3366 and Emivirine. Bioorg. Med. Chem. 2004, 12, 1141–1149, doi:10.1016/j.bmc.2003.11.032.
[39]
El-Brollosy, N.R.; Nielsen, C.; Pedersen, E.B. Synthesis of N-1-(indanyloxymethyl) and N-1-(4-Hydroxybut-2-enyloxymethyl) analogues of the HIV drug Emivirine and GCA-186. Monatsh. Chem. 2005, 136, 1247–1254, doi:10.1007/s00706-005-0318-7.
[40]
Sorensen, E.R.; El-Brollosy, N.R.; Jorgensen, P.T.; Pedersen, E.B.; Nielsen, C. Synthesis of 6-(3,5-dichlorobenzyl) derivatives as isosteric analogues of the HIV drug 6-(3,5-dimethylbenzyl)-1-(ethoxymethyl)-5-isopropyluracil (GCA-186). Arch. Pharm. Chem. Life Sci. 2005, 338, 299–304, doi:10.1002/ardp.200400952.
[41]
El-Brollosy, N.R.; Sorensen, E.R.; Pedersen, E.B.; Sanna, G.; LaColla, P.; Loddo, R. Synthesis and antiviral evaluation of 6-(trifluoromethylbenzyl) and 6-(fluorobenzyl) analogues of HIV drugs emivirine and GCA-186. Arch. Pharm. Chem. Life Sci. 2008, 341, 9–19.
[42]
El-Brollosy, N.R.; Al-Deeb, O.A.; El-Emam, A.A.; Pedersen, E.B.; LaColla, P.; Collu, G.; Sanna, G.; Loddo, R. Synthesis of novel uracil non-nucleoside derivatives as potential reverse transcriptase inhibitors of HIV-1. Arch. Pharm. Chem. Life Sci. 2009, 342, 663–670, doi:10.1002/ardp.200900139.
[43]
Penna, C.A.; Marino, S.G.; Gutkind, G.O.; Clavin, M.; Ferraro, G.; Martino, V. Antimicrobial activity of Eupatorium species growing in Argentina. J. Herbs. Spices Med. Plants 1998, 5, 21–28.