A series of 1 H-2,3-dihydroperimidine derivatives was designed, synthesized, and evaluated as a new class of inhibitors of protein tyrosine phosphatase 1B (PTP1B) with IC 50 values in the micromolar range. Compounds 4 6 and 49 showed submicromolar inhibitory activity against PTP1B, and good selectivity (3.48-fold and 2.10-fold respectively) over T-cell protein tyrosine phosphatases (TCPTP). These results have provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.
References
[1]
Hunter, T. Tyrosine phosphorylation: Thirty years and counting. Curr. Opin. Cell Biol. 2009, 21, 140–146.
[2]
Zhang, Z.Y. Protein tyrosine phosphatases: Prospects for therapeutics. Curr. Opin. Chem. Biol. 2001, 5, 416–423, doi:10.1016/S1367-5931(00)00223-4.
[3]
Julien, S.G.; Dube, N.; Hardy, S.; Tremblay, M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer 2011, 11, 35–49, doi:10.1038/nrc2980.
[4]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 2009, 9, 28–39, doi:10.1038/nrc2559.
[5]
Knight, Z.A.; Lin, H.; Shokat, K.M. Targeting the cancer kinome through polypharmacology. Nat. Rev. Cancer 2010, 10, 130–137, doi:10.1038/nrc2787.
[6]
Kim, S.J.; Ryu, S.E. Structure and catalytic mechanism of human protein tyrosine phosphatome. BMB Rep. 2012, 45, 693–699, doi:10.5483/BMBRep.2012.45.12.240.
[7]
Tonks, N.K. Protein tyrosine phosphatases-from housekeeping enzymes to master regulators of signal transduction. FEBS J. 2013, 280, 346–378, doi:10.1111/febs.12077.
[8]
Janne, P.A.; Gray, N.; Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat. Rev. Drug. Discov. 2009, 8, 709–723, doi:10.1038/nrd2871.
[9]
He, Y.; Liu, S.; Menon, A.; Stanford, S.; Oppong, E.; Gunawan, A.M.; Wu, L.; Wu, D.J.; Barrios, A.M.; Bottini, N.; et al. A potent and selective small-molecule inhibitor for the lymphoid-specific tyrosine phosphatase (LYP), a target associated with autoimmune diseases. J. Med. Chem. 2013, 56, 4990–5008, doi:10.1021/jm400248c.
[10]
Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001, 414, 821–827, doi:10.1038/414821a.
[11]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999, 283, 1544–1548, doi:10.1126/science.283.5407.1544.
[12]
Klaman, L.D.; Boss, O.; Peroni, O.D.; Kim, J.K.; Martino, J.L.; Zabolotny, J.M.; Moghal, N.; Lubkin, M.; Kim, Y.B.; Sharpe, A.H.; et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell Biol. 2000, 20, 5479–5489, doi:10.1128/MCB.20.15.5479-5489.2000.
[13]
Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta 2010, 1804, 613–619, doi:10.1016/j.bbapap.2009.09.018.
[14]
Yip, S.C.; Saha, S.; Chernoff, J. PTP1B: A double agent in metabolism and oncogenesis. Trends Biochem. Sci. 2010, 35, 442–449.
[15]
He, R.; Zeng, L.F.; He, Y.; Zhang, S.; Zhang, Z.Y. Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J. 2013, 280, 731–750, doi:10.1111/j.1742-4658.2012.08718.x.
[16]
Sobhia, M.E.; Paul, S.; Shinde, R.; Potluri, M.; Gundam, V.; Kaur, A.; Haokip, T. Protein tyrosine phosphatase inhibitors: A patent review (2002–2011). Expert Opin. Ther. Pat. 2012, 22, 125–153, doi:10.1517/13543776.2012.661414.
[17]
Barr, A.J. Protein tyrosine phosphatases as drug targets: Strategies and challenges of inhibitor development. Future Med. Chem. 2010, 2, 1563–1576, doi:10.4155/fmc.10.241.
[18]
Erbe, D.V.; Wang, S.; Zhang, Y.L.; Harding, K.; Kung, L.; Tam, M.; Stolz, L.; Xing, Y.; Furey, S.; Qadri, A.; et al. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Mol. Pharmacol. 2005, 67, 69–77, doi:10.1124/mol.104.005553.
[19]
Lantz, K.A.; Hart, S.G.; Planey, S.L.; Roitman, M.F.; Ruiz-White, I.A.; Wolfe, H.R.; McLane, M.P. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity 2010, 18, 1516–1523, doi:10.1038/oby.2009.444.
[20]
Dai, H.L.; Gao, L.X.; Yang, Y.; Li, J.Y.; Cheng, J.G.; Li, J.; Wen, R.; Peng, Y.Q.; Zheng, J.B. Discovery of di-indolinone as a novel scaffold for protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 7440–7443, doi:10.1016/j.bmcl.2012.10.054.
Belmonte, M.M.; Escudero-Adán, E.C.; Benet-Buchholz, J.; Haak, R.M.; Kleij, A.W. Facile synthesis of substituted Mono-, Di-, Tri- and Tetra-2-aryl-2,3-dihydro-1H-perimidines. Eur. J. Org. Chem. 2010, 4823–4831.
[23]
Chong, H.S.; Torti, S.V.; Ma, R.; Torti, F.M.; Brechbiel, M.W. Synthesis and potent antitumor activities of novel 1,3,5-cis,cis-triaminocyclohexane N-pyridyl derivatives. J. Med. Chem. 2004, 47, 5230–5234, doi:10.1021/jm040076w.
[24]
Shi, L.; Yu, H.P.; Zhou, Y.Y.; Du, J.Q.; Shen, Q.; Li, J.Y.; Li, J. Discovery of a novel competitive inhibitor of PTP1B by high-throughput screening. Acta Pharmacol. Sin. 2008, 29, 278–284, doi:10.1111/j.1745-7254.2008.00737.x.
[25]
Zhang, W.; Hong, D.; Zhou, Y.; Zhang, Y.; Shen, Q.; Li, J.Y.; Hu, L.H.; Li, J. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim. Biophys. Acta 2006, 1760, 1505–1512.
[26]
McGovern, S.L.; Helfand, B.T.; Feng, B.; Shoichet, B.K. A specific mechanism of nonspecific inhibition. J. Med. Chem. 2003, 46, 4265–4272, doi:10.1021/jm030266r.
[27]
, Sample Availability: Samples of the compounds 1-6, 8-19, 21-35 and 40-49 are available from the authors..