全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2013 

Forensic Assessment of Metal Contaminated Rivers in the 21st Century Using Geochemical and Isotopic Tracers

DOI: 10.3390/min3020192

Keywords: environmental forensics, geochemical fingerprinting, isotopic tracers, non-traditional isotopes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Documentation of contaminant source and dispersal pathways in riverine environments is essential to mitigate the potentially harmful effects of contaminants on human and ecosystem health, and is required from a legal perspective (particularly where the polluter pays principle is in effect) in assessing site liability. Where multiple natural and/or anthropogenic sources exist, identification of contaminant provenance has proven problematic, and estimated contributions from a specific source are often the subject of judicial debate. The past, current, and future use of geochemical and isotopic tracers in environmental forensic investigations of contaminant provenance, transport, and fate are analyzed herein for sediment-associated trace metals in riverine environments, particularly trace metals derived from mining and refining operations. The utilized methods have evolved significantly over the past four decades. Of primary significance has been the growing integration of geomorphic and stratigraphic techniques with the use of an increasing number of geochemical tracers including stable isotopes. The isotopes of Pb have been particularly well studied, and have been applied to a wide range of environmental media. Advances in analytical chemistry since the early 1990s have allowed for the precise characterization of other non-traditional stable isotopic systems within geological materials. The potential for using these non-traditional isotopes as tracers in river systems has yet to be adequately explored, but a number of these isotopes (e.g., Cd, Cu, Cr, Hg, Sb, and Zn) show considerable promise. Moreover, some of these isotopes (e.g., those of Cu, Cr, and Hg) may provide important insights into biogeochemical cycling processes within aquatic environments. This review suggests that future environmental forensic investigations will be characterized by an interdisciplinary approach that combines the use of multiple geochemical tracers with detailed stratigraphic, geomorphic, and hydrologic data, thereby yielding results that are likely to withstand the scrutiny of judicial review.

References

[1]  Murray, R.C. Evidence from the Earth; Mountain Press: Sevierville, TN, USA, 2004.
[2]  Murray, R.C. Forensic geology: Yesterday, today and tomorrow. In Forensic Geosciences: Principles, Techniques, and Applications; Pye, K., Croft, D.J., Eds.; Special Publication 232; The Geological Society of London: London, UK, 2004; pp. 7–9.
[3]  Zarull, M.A.; Hartig, J.H.; Maynard, L.; Sediment Priority Action Committee; Great Lakes Water Quality Board. Ecological Benefits of Contaminated Sediment Remediation in the Great Lakes Basin; International Joint Commission: Detroit, MI, USA, 1999.
[4]  Miller, J.R.; Orbock Miller, S.M. Contaminated River: A Geomorphological-Geochemical Approach to Site Assessment and Remediation; Springer: Berlin, Germany, 2007.
[5]  F?rstner, U.; Wittmann, G.T.W. Metal Pollution in the Aquatic Environment, 2nd ed.; Springer Verlag: New York, NY, USA, 1981.
[6]  Gibbs, R.J. Transport phases of transition metals in the Amazon and Yukon Rivers. Geol. Soc. Am. Bull. 1977, 88, 829–843, doi:10.1130/0016-7606(1977)88<829:TPOTMI>2.0.CO;2.
[7]  Horowitz, A.J. A Primer on Sediment-Trace Element Chemistry, 2nd ed.; Lewis Publishers: Chelsea, MI, USA, 1991.
[8]  Macklin, M.G.; Brewer, P.A.; Hudson-Edwards, K.A.; Bird, G.; Coulthard, T.J.; Dennis, I.A.; Lechler, P.J.; Miller, J.R.; Turner, J.N. A Geomorphological-Geochemical Approach to River Basin Management in Mining-Affected Rivers. In The Human Role in Changing Fluvial Systems, Proceedings of the 37th International Binghamton Geomorphology Symposium, Columbia, SC, USA, 20–22 October 2006; James, L.A., Marcus, W.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 423–447.
[9]  Foster, I.D.L.; Lees, J.A. Tracers in geomorphology: Theory and applications in tracing fine particulate sediments. In Tracers in Geomorphology; Foster, I.D.L., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2000; pp. 3–20.
[10]  Hoefs, J. Geochemical fingerprints: A critical appraisal. Eur. J. Miner. 2010, 22, 3–15, doi:10.1127/0935-1221/2010/0022-1997.
[11]  Bigham, J.M.; Ciolkosz, E.J. Soil Color; SSSA Special Publication No. 31; Soil Science Society of America: Madison, WI, USA, 1993.
[12]  Croft, D.J.; Pye, K. Colour Theory and the evaluation of an instrumental method of measurement using geological samples for forensic applications. In Forensic Geosciences: Principles, Techniques, and Applications; Pye, K., Croft, D.J., Eds.; Special Publication 232; The Geological Society of London: London, UK, 2004; pp. 49–62.
[13]  Dudley, R.J.; Smalldon, K.W. The objective comparison of the particle size distribution in soils with particular reference to the sand fraction. Med. Sci. Law. 1978, 18, 278–281.
[14]  Robertson, J.; Thomas, C.J.; Caddy, B.; Lewis, A.J.M. Particle size analysis of soils: A comparison of dry and wet sieving techniques. Forensic Sci. Int. 1984, 24, 209–217, doi:10.1016/0379-0738(84)90186-5.
[15]  Knox, J.C. Historical valley floor sedimentation in the upper Mississippi valley. Ann. Assoc. Am. Geogr. 1987, 77, 224–244, doi:10.1111/j.1467-8306.1987.tb00155.x.
[16]  Sutherland, R.A. Selective erosion and sediment source identification, Baringo District, Kenya. Z. Geomorphol. 1991, 35, 293–304.
[17]  Blott, S.J.; Croft, D.J.; Pye, K.; Saye, S.E.; Wilson, H.E. Particle size analysis by laser diffraction. In Forensic Geosciences: Principles, Techniques, and Applications; Pye, K., Croft, D.J., Eds.; Special Publication 232; The Geological Society of London: London, UK, 2004; pp. 63–73.
[18]  Fan, P.F. Recent silts in the Santa Clara River drainage basin, Southern California: A mineralogical investigation of their origin and evolution. J. Sediment. Petrol. 1976, 46, 802–812.
[19]  Graves, W.J. A mineralogical soil classification technique for the forensic scientist. J. Forensic Sci. 1979, 24, 323–337.
[20]  Ugolini, F.C.; Corti, G.; Agenelli, A.; Piccardi, F. Mineralogical, physical and chemical properties of rock fragments in soil. Soil Sci. 1996, 161, 521–542.
[21]  Oldfield, R.; Rummery, T.A.; Thomas, R.; Walling, D. Identification of suspended sediment sources by means of magnetic measurements: Some preliminary results. Water Resour. Res. 1979, 15, 211–218, doi:10.1029/WR015i002p00211.
[22]  Walling, D.E.; Peart, M.R.; Oldfield, F.; Thompson, R. Suspended sediment sources identified by magnetic measurements. Nature 1979, 281, 110–113, doi:10.1038/281110a0.
[23]  Fitzpatrick, F.; Thornton, J.I.M. Wide-band detector for microampere low-energy elecontron currents. J. Forensic Sci. 1974, 4, 460–475.
[24]  Demmelmeyer, H.; Adam, J. Forensic investigation of soil and vegetable materials. Forensic Sci. Rev. 1995, 7, 120–136.
[25]  Pirrie, D.; Butcher, A.R.; Power, M.R.; Gottlieb, P.; Miller, G.L. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QuemSCAN): Potential applications in forensic geosciences. In Forensic Geosciences: Principles, Techniques, and Applications; Pye, K., Croft, D.J., Eds.; Special Publication 232; The Geological Society of London: London, UK, 2004; pp. 123–136.
[26]  Pye, K. Forensic Examination of rocks, sediments, soils, and dust using scanning electron microscopy and X-ray chemical microanalysis. In Forensic Geosciences: Principles, Techniques, and Applications; Pye, K., Croft, D.J., Eds.; Special Publication 232; The Geological Society of London: London, UK, 2004; pp. 103–122.
[27]  Lewin, J.; Wolfenden, P.J. The assessment of sediment source: A field experiment. Earth Surf. Proc. Land. 1978, 3, 171–178, doi:10.1002/esp.3290030205.
[28]  Knox, J.C. Rates of floodplain overbank vertical accretion. In Floodplain Evolution; Brakenridge, G.R., Hagedorn, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1992.
[29]  Bird, G. Provenancing anthropogenic Pb within the fluvial environment: Developments and challenges in the use of Pb isotopes. Environ. Int. 2011, 37, 802–819.
[30]  Macklin, M.G. Floodplain sedimentation in the Upper Axe Valley, Mendip, England. Trans. Inst. Br. Geogr. 1985, 10, 235–244, doi:10.2307/621826.
[31]  Passmore, D.G.; Macklin, M.G. Provenance of fine-grained alluvium and late holocene land-use change in the Tyne Basin, Northern England. Geomorphology 1994, 9, 127–142, doi:10.1016/0169-555X(94)90071-X.
[32]  Church, S.E.; Unruh, D.M.; Fey, D.L.; Sole, T.C. Trace Element and Lead Isotopes in Streambed Sediment in Streams Affected by Historical Mining; U.S. Geological Survey Professional Paper 1652; U.S. Government Printing Office: Washington, DC, USA, 2004. Chapter D8.
[33]  Ulrich, A.; Moor, C.; Vonmont, H.; Jordi, H.R.; Lory, M. ICP-MS trace element analysis as a forensic tool. Anal. Bioanal. Chem. 2004, 378, 1059–1068, doi:10.1007/s00216-003-2434-8.
[34]  Aggarwal, J.; Habicht-Mauche, J.; Juarez, C. Application of heavy stable isotopes in forensic geochemistry: A review. Appl. Geochem. 2008, 23, 2658–2666, doi:10.1016/j.apgeochem.2008.05.016.
[35]  Zhang, H.; Yao, Q.; Zhu, Y.; Fan, S.; He, P. Review of source identification methodologies for heavy metals in solid waste. Chin. Sci. Bull. 2013, 58, 162–168, doi:10.1007/s11434-012-5531-2.
[36]  Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 1997, 29, 1–27, doi:10.1016/S0341-8162(96)00064-1.
[37]  Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Use of the geochemical record preserved in floodplain deposits to reconstruct recent changes in River Basin Sediment Sources. Geomorphology 1997, 19, 151–167, doi:10.1016/S0169-555X(96)00044-X.
[38]  Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers. Earth Surf. Proc. Land. 1998, 23, 31–52, doi:10.1002/(SICI)1096-9837(199801)23:1<31::AID-ESP816>3.0.CO;2-Z.
[39]  Collins, A.L.; Walling, D.E. Selecting fingerprinting properties for discriminating potential suspended sediment sources in river basins. J. Hydrol. 2002, 261, 218–244, doi:10.1016/S0022-1694(02)00011-2.
[40]  Miller, J.; Lord, M.; Yurkovich, S.; Mackin, G.; Kolenbrander, L. Historical trends in sedimentation rates and sediment provenance, Fairfield Lake, western North Carolina. Water Resour. Bull. 2005, 41, 1053–1075, doi:10.1111/j.1752-1688.2005.tb03785.x.
[41]  Miller, J.R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa. Hydrol. Earth Syst. Sci. 2012, 17, 1–22.
[42]  Cheng, H.; Hu, Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environ Pollut. 2010, 158, 1134–1146, doi:10.1016/j.envpol.2009.12.028.
[43]  Farmer, J.G.; Eades, L.J.; MacKenzie, A.B.; Kirika, A.; Bailey-Watts, T.E. Stable lead isotope record of lead pollution in Loch Lomond sediments since 1630 A.D. Environ. Sci. Technol. 1996, 3, 3080–3083.
[44]  Duzgoren-Aydin, N.S.; Weiss, A.L. Use and abuse of Pb-isotope fingerprinting technique and GIS mapping data to assess lead in environmental studies. Environ. Geochem. Health 2008, 30, 577–588, doi:10.1007/s10653-008-9179-4.
[45]  Villarroel, L.F.; Miller, J.R.; Lechler, P.J.; Germanoski, D. Lead, Zinc, and Antimony contamination of the Rio Chilco-Rio Tupiza drainage system, southern Bolivia. Environ. Geol. 2006, 51, 283–299, doi:10.1007/s00254-006-0326-x.
[46]  Wolfenden, P.J.; Lewin, J. Distribution of metal pollutants in floodplain sediments. Catena 1978, 4, 309–317, doi:10.1016/0341-8162(77)90030-3.
[47]  Lewin, J.; Macklin, M.G. Metal mining and floodplain sedimentation in Britian. In International Geomorphology; Gardiner, V., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 1987; pp. 1009–1027.
[48]  Marcus, W.A. Copper dispersion in ephemeral stream sediments. Earth Surf. Proc. Land. 1987, 12, 217–228, doi:10.1002/esp.3290120302.
[49]  Taylor, M.P.; Kesterton, R.G.H. Heavy metal contamination of an arid river environment: Gruben River, Namibia. Geomorphology 2002, 42, 311–327, doi:10.1016/S0169-555X(01)00093-9.
[50]  Miller, J.R.; Lechler, P.J.; Desilets, M. The role of geomorphic processing in the transport and fate of mercury in the Carson River basin, west-central Nevada. Environ. Geol. 1998, 33, 249–262, doi:10.1007/s002540050244.
[51]  Moore, J.N.; Brook, E.J.; Johns, C. Grain size partitioning of metals in contaminated, coarse-grained river floodplain sediments: Clark Fork River, Montana, USA. Environ. Geol. Water S. 1989, 12, 107–115.
[52]  Loring, D.H. Lithium—A new approach for the granulometric normalization of trace metal data. Mar. Chem. 1990, 29, 155–168, doi:10.1016/0304-4203(90)90011-Z.
[53]  Loring, D.H.; Rantala, R.T.T. Manual for the geochemical analysis of sediments and suspended particular matter. Earth Sci. Rev. 1992, 32, 235–283, doi:10.1016/0012-8252(92)90001-A.
[54]  Devesa-Rey, R.; Díaz-Fierros, F.; Barral, M.T. Normalization strategies for river bed sediments: A graphical approach. Microchem. J. 2009, 91, 253–265, doi:10.1016/j.microc.2008.12.004.
[55]  Macklin, M.G.; Lewin, J. Sediment transfer and transformation of an alluvial valley floor: The river south Tyne, Northumbria, U.K. Earth. Surf. Proc. Land. 1989, 14, 233–246, doi:10.1002/esp.3290140305.
[56]  Macklin, M.G.; Dowsett, R.B. The chemical and physical speciation of trace metals in fine grained overbank flood sediments in the Tyne Basin, north-east England. Catena 1989, 16, 135–151, doi:10.1016/0341-8162(89)90037-4.
[57]  Mackin, M.G. Fluxes and storage of sediment-associated heavy metals in floodplain systems: assessment and river basin management issues at a time of rapid environmental change. In Floodplain Processes; Anderson, M.G., Walling, D.E., Bates, P.D., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 1996; pp. 441–460.
[58]  Miller, J.R.; Germanoski, D.; Villarroel, L.F.; Lechler, P. Spatial and temporal variations in the transport and storage of trace metal contaminants in the Upper Río Pilcomayo, Southern Bolivia. Int. J. Environ. Heal. R. 2009, 3, 334–361, doi:10.1504/IJENVH.2009.030107.
[59]  Nicholas, A.P.; Ashworth, P.J.; Kirkby, M.J.; Macklin, M.G.; Murray, T. Sediment slugs: Large-scale fluctuations in fluvial sediment transport rates and storage volumes. Prog. Phys. Geog. 1995, 19, 500–519, doi:10.1177/030913339501900404.
[60]  Hoey, T. Temporal variation in bedload transport rates and sediment storage in gravel river beds. Prog. Phys. Geog. 1992, 16, 319–338, doi:10.1177/030913339201600303.
[61]  Bartley, R.; Rutherfurd, I. Re-evaluation of the wave model as a tool for quantifying the geomorphic recovery potential of streams disturbed by sediment slugs. Geomorphology 2005, 64, 221–242, doi:10.1016/j.geomorph.2004.07.005.
[62]  Gilbert, G.K. Hydraulic-Mining Debris in the Sierra Nevada; U.S. Government Printing Office: Washington, DC, USA, 1917.
[63]  Helgen, S.O.; Moore, J.N. Natural background determination and impact quantification in trace metal-contaminated river sediments. Environ. Sci. Technol. 1996, 30, 129–135, doi:10.1021/es950192b.
[64]  Miller, J.R.; Lechler, P.J.; Hudson-Edwards, K.A.; Macklin, M.G. Lead isotopic fingerprinting of heavy metal contamination, Rio Pilcomayo, Bolivia. J. Geochem. Explor. Environ. Anal. 2002, 2, 225–233.
[65]  Yu, L.; Oldfield, F. A multivariate mixing model for identifying sediment source from magnetic measurements. Quat. Res. 1989, 32, 168–181, doi:10.1016/0033-5894(89)90073-2.
[66]  Rowan, J.S.; Goodwill, P.; Franks, S.W. Uncertainty estimation in fingerprinting suspended sediment sources. In Tracers in Geomorphology; Foster, I.D.L., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2000; pp. 279–289.
[67]  Rowan, J.S.; Black, S.; Franks, S.W. Sediment fingerprinting as an environmental forensics tool explaining cyanobacteria blooms in lakes. Appl. Geogr. 2012, 32, 832–843, doi:10.1016/j.apgeog.2011.07.004.
[68]  Collins, A.L.; Walling, D.E.; Webb, L.; King, P. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weights and prior information. Geoderma 2010, 155, 249–261, doi:10.1016/j.geoderma.2009.12.008.
[69]  Small, I.F.; Rowan, J.S.; Franks, S.W. Quantitative sediment fingerprinting using a Bayesian uncertainty estimation framework. In The Structure, Function and Management Implications of Fluvial Sedimentary Systems; Dyer, F.J., Thoms, M.C., Olley, J.M., Eds.; IAHS Publications: Wallingford, UK, 2002; pp. 443–450.
[70]  Small, I.F.; Rowan, J.S.; Franks, S.W.; Wyatt, A.; Duck, R.W. Bayesian sediment fingerprinting provides a robust tool for environmental forensic geosciences applications. In Forensic Geosciences: Principles, Techniques, and Applications; Pye, K., Croft, D.J., Eds.; Special Publication 232; The Geological Society of London: London, UK, 2004; pp. 207–213.
[71]  Miller, J.R.; Mackin, G. Concentrations, sources, and potential ecological impacts of selected trace metals on aquatic biota within the Little Tennessee River Basin, North Carolina. Water Air Soil Poll. 2013. in press.
[72]  Macklin, M.G.; Klimek, K. Dispersal, storage and transformation of metal-contaminated alluvium in the upper Vistula basin, southwest Poland. Appl. Geochem. 1992, 12, 7–30.
[73]  Hudson-Edwards, K.A.; Macklin, M.; Taylor, M. Historic metal mining input to Tees River sediment. Sci. Total Environ. 1997, 194–195, 437–445, doi:10.1016/S0048-9697(96)05381-8.
[74]  Nguygen, H.L.; Braun, M.; Szaloki, I.; Baeyens, W.; van Grieken, R.; Lerrmakers, M. Tracing the metal pollution history of the Tisza River through the analysis of a sediment depth profile. Water Air Soil Poll. 2009, 200, 119–132, doi:10.1007/s11270-008-9898-2.
[75]  Bábek, O.; Fam?ra, M.; Hilscherová, K.; Kalvoda, J.; Dobrovolny, P.; Sedlá?ek, J.; Machát, J.; Holoubek, I. Geochemical traces of flood layers in the fluvial sedimentary archive: Implications for contamination history analyses. Catena 2011, 87, 281–290.
[76]  Matys Grygar, T.M.; Nováková, T.; Bábek, O.; Elznicová, J.; Vadinová, N. Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A cast study on the Jizera River, Czech Republic. Sci. Total Environ. 2013, 452–453, 233–245.
[77]  Du Laing, G.; Rinklebe, J.; Vandencasteele, B.; Meers, E.; Tack, F.M.G. Trace metal behavior in estuarine and riverine floodplain sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985, doi:10.1016/j.scitotenv.2008.07.025.
[78]  Matys Grygar, T.; Novakoa, T.; Mihaljevic, M.; Strnad, L.; Koptikova, L. Surprisingly small increase in the sedimentation rate in the foodplain of Marova River in the Straznice area, Czech Republic, in the last 100 years. Catena 2011, 86, 461–471.
[79]  Matys Grygar, T.; Sedlacek, J.; Bábek, O.; Novakoa, T.; Strnad, L.; Mihaljevic, M. Regional contamination of Moravia (south-eastern Czech Republic): Temporal shift of Pb and Zn loading in fluvial sediments. Water Air Soil Pollut. 2012, 223, 739–753, doi:10.1007/s11270-011-0898-2.
[80]  Ferrand, E.; Eyrolle, F.; Radakovitch, O.; Provansal, M.; Dufour, S.; Vella, C.; Raccasi, G.; Gurriaran, R. Historical levels of heavy metals and artificial radionuclides reconstructed from overbank sediment records in lower Rh?ne River (South-East France). Geochim. Cosmochim. Acta 2012, 82, 163–182, doi:10.1016/j.gca.2011.11.023.
[81]  Walling, D.E.; Owens, P.N.; Carter, J.; Leeks, G.J.L.; Lewis, S.; Meharg, A.A.; Wright, J. Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Appl. Geochem. 2003, 18, 195–220, doi:10.1016/S0883-2927(02)00121-X.
[82]  Tobin, G.A.; Brinkmann, R.; Montz, B.E. Flooding and the distribution of selected metals in floodplain sediments in St. Maries, Idaho. Environ. Geochem. Health 2000, 22, 219–232, doi:10.1023/A:1026502324603.
[83]  Pease, P.; Leece, S.; Gares, P.; Rigsby, C. Heavy metal concentrations in sediment deposits on the Tary River floodplain following Hurricane Floyd. Environ. Geol. 2007, 51, 1003–1111.
[84]  Stokes, S.; Walling, D.E. Radiogenic and isotopic methods for the direct dating of fluvial sediments. In Tools in Fluvial Geomorphology; Kondolf, M.G., Piegay, H., Eds.; John Wiley and Sons: Chichester, UK, 2005; pp. 233–267.
[85]  Hudson-Edwards, K.A.; Macklin, M.G.; Curtis, C.D.; Vaughan, D.J. Chemical remobilization of contaminated metals within floodplain sediments in an incising river system: Implications for dating and chemostratigraphy. Earth Surf. Proc. Land. 1998, 23, 671–684, doi:10.1002/(SICI)1096-9837(199808)23:8<671::AID-ESP871>3.0.CO;2-R.
[86]  Davies, B.E.; Lewin, J. Chronosequences in alluvial soils with special reference to historical pollution in Cardiganshire, Wales. Environ. Pollut. 1974, 6, 49–57, doi:10.1016/0013-9327(74)90046-9.
[87]  Rang, M.C.; Schouten, C.J. Evidence for historical heavy metal pollution in floodplain soils: The Meuse. In Historical Change of Large Alluvial Rivers: Western Europe; Petts, G.E., Ed.; John Wiley and Sons: Chichester, UK, 1989; pp. 127–142.
[88]  Sear, D.; Carver, S. The release and dispersal of Pb and Zn contaminated sediments within an Arctic braided river system. Appl. Geochem. 1996, 11, 187–195, doi:10.1016/0883-2927(95)00080-1.
[89]  Klimek, K.; Zawilinska, L. Trace elements in alluvia of the Upper Vistula as indicators of palaeohyology. Earth Surf. Proc. Land. 1985, 10, 273–280, doi:10.1002/esp.3290100309.
[90]  Taylor, M.P.; Lewin, J. River behaviour and Holocene alleviation: The river Severn at Welshpool, mid-Wales, U.K. Earth Surf. Proc. Land. 1996, 21, 77–91, doi:10.1002/(SICI)1096-9837(199601)21:1<77::AID-ESP547>3.0.CO;2-O.
[91]  Harrison, J.; Heijnis, H.; Caprarelli, G. Historical pollution variability form abandoned mine sites, Greater Blue Mountains World Heritage Area, New South Wales, Australia. Environ. Geol. 2003, 43, 680–687.
[92]  Bradley, S.B.; Cox, J.J. Heavy metals in the Hamps and Manifold valleys, North Straffordshire, U.K.: Partitioning of metals in floodplain soils. Sci. Total Environ. 1987, 65, 135–153, doi:10.1016/0048-9697(87)90167-7.
[93]  Knox, J.C. Responses of floods to Holocene climatic change in the Upper Mississippi Valley. Quatern. Res. 1985, 23, 287–300, doi:10.1016/0033-5894(85)90036-5.
[94]  Berner, Z.A.; Bleeck-Schumidt, B.; Stüben, D.; Neumann, T.; Fuchs, M.; Lehmann, M. Floodplain deposits: A geochemical archive of flood history—A case study on the River Rhine, Germany. Appl. Geochem. 2012, 27, 543–561, doi:10.1016/j.apgeochem.2011.12.007.
[95]  Navrátil, T.; Rohovec, J.; ?ák, K. Floodplain sediments of the 2002 catastrophic flood at eh Vltava (Moldau) River and its tributaries: Mineralogy, chemical composition, and post-sedimentary evolution. Environ. Geol. 2008, 56, 399–412, doi:10.1007/s00254-007-1178-8.
[96]  Brovo, A.G.; Loizeau, J.L.; Ancey, L.; Ungureanu, V.G.; Dominik, J. Historical record of mecury contamination in sediments from the Babeni Reservoir in the Olt River, Romania. Environ. Sci. Pollut. R. 2009, 16, 66–75, doi:10.1007/s11356-008-0057-5.
[97]  Lewin, J.; Macklin, M. Perservation potential for Late Quaternary river alluvium. J. Quat. Sci. 2003, 18, 107–1120.
[98]  Müller, J.; Ruppert, H.; Muramatsu, Y.; Schneider, J. Reservoir sediments—A witness of mining and industrial development (Malter reservoir, eastern Erzgebirge, Germany. Environ. Geol. 2000, 39, 1341–1351, doi:10.1007/s002540000117.
[99]  Arnason, J.G.; Fletcher, B.A. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA. Environ. Pollut. 2003, 123, 383–391, doi:10.1016/S0269-7491(03)00015-0.
[100]  Callender, E. Geochemical effects of rapid sedimentation in aquatic systems: Minimal diagenesis and the preservation of historical metal signatures. J. Paleolimnol. 2000, 23, 243–260, doi:10.1023/A:1008114630756.
[101]  Audry, S.; Sch?fer, J.; Blanc, G.; Jouanneau, J.M. Fify-year sedimentary record of heavy metal pollution (CD, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ. Pollut. 2004, 132, 413–426.
[102]  Von Gunten, H.R.; Sturm, M.; Moser, R.N. 200-year record of metals in lake sediments and natural background concentrations. Environ. Sci. Technol. 1997, 31, 2193–2197, doi:10.1021/es960616h.
[103]  K?hk?nen, M.A.; Suominen, K.P.; Manninen, P.K.; Salkinoja-Salonen, M.S. 100 years of sediment accumulation history of organic halogens and heavy metals in recipient and nonrecipient lakes of pulping industry in Finland. Environ. Sci. Technol. 1998, 32, 1741–1746, doi:10.1021/es9708880.
[104]  Lima, A.L.; Bergquist, B.A.; Boyle, E.A.; Reuer, M.K.; Dudas, F.O.; Reddy, C.M.; Eglinton, T.I. High-resolution historical records from Pettaquamscutt River basin sediments. Geochim. Cosmochim. Acta 2005, 69, 1813–1824, doi:10.1016/j.gca.2004.10.008.
[105]  Mil-Homens, M.; Blum, J.; Canário, J.; Caetano, M.; Costa, A.M.; Lebreiro, S.M.; Trancoso, M.; Richter, T.; de Stigter, H.; Johnson, M.; et al. Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chem. Geol. 2013, 336, 62–71, doi:10.1016/j.chemgeo.2012.02.018.
[106]  MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contaminat. Toxicol. 2000, 39, 20–31, doi:10.1007/s002440010075.
[107]  Leigh, D.S. Morphology and channel evolution of small streams in the Southern Blue Ridge Mountains of western North Carolina. Southeastern Geogr. 2010, 50, 397–421, doi:10.1353/sgo.2010.0010.
[108]  Banner, J.L. Radiogenic isotopes: Systematics and applications to earth surface processes and chemical stratigraphy. Earth Sci. Rev. 2004, 65, 141–194.
[109]  Calanchi, N.; Dinelli, E.; Lucchini, F.; Mordenti, A. Chemostratigraphy of late Quaternary sediments from Lake Albano and Central Adriatic Sea corres (Paliclas Project). Memoir 1st Ital. Idrobiol. 1996, 55, 247–263.
[110]  Boyle, J.F. Iorganic geochemical methods in palaeolimnology. In Tracking Environmental Change Using Lake Sediments: Physical and Geochemical Methods; Last, W.M., Smol, J.P., Eds.; Khrwer: Dordrecht, The Netherland, 2001; pp. 85–141.
[111]  Lucchini, F.; Dinelli, E.; Calachi, N. Chemostratigraphy of Lago Albano sediments (central Italy): Geochemical evidence of palaeoenvironmental changes in late Quaternary. J. Paleoliminol. 2003, 29, 109–122, doi:10.1023/A:1022828724529.
[112]  Mabrouk, A.; Jarvis, I.; Belayouni, H.; Moody, R.T.J.; de Cabrera, S. An integrated chemostratigraphic study of the Campanian-Early Masstrichtian deposits of offshore Miskar Field in southeastern Tunisia: SIS, δ13C and δ18 O isotopes, and elemental geochemistry. Stratigraphy 2005, 2, 193–216.
[113]  Popp, C.L.; Hawley, J.W.; Love, D.W.; Dehn, M. Use of radiometric (Cs-137, Pb-210), geomorphic and stratigraphic techniques to date recent oxbow sediments in the Rio Puerco drainage, Grants Uranium region, New Mexico. Environ. Geol. Water Sci. 1988, 11, 253–269.
[114]  Chillrud, S.N.; Semming, S.; Shuster, E.L.; Simpson, H.J.; Bopp, R.F.; Ross, J.M.; Pederson, D.C.; Chaky, D.A.; Tolley, L.-R.; Estabrooks, F. Stable lead isotopes, contaminant metals and radionuclides in upper Hudson River sediment cores: Implications for improved time stratigraphy and transport processes. Chem. Geol. 2003, 199, 53–70, doi:10.1016/S0009-2541(03)00055-X.
[115]  Grygar, T.; Sv?tlík, I.; Lisá, L.; Koptíková, L.; Bajer, A.; Wray, D.; Ettler, V.; Mihaljevi?, M.; Nováková, T.; Koubová, M.; et al. Geochemical tools for the stratigraphic correlation of floodplain deposits of the Morava River in Strá?nické Pomoraví, Czech Republic from the last millennium. Catena 2010, 80, 106–121, doi:10.1016/j.catena.2009.09.005.
[116]  Miller, J.R.; Hudson-Edwards, K.A.; Lechler, P.J.; Preston, D.; Macklin, M.G. Heavy metal contamination of water, soil, and produce within riverine communities of the Rio Pilcomayo basin, Bolivia. Sci. Total Environ. 2004, 320, 189–209.
[117]  Chow, T.J.; Johnstone, M.S. Lead isotopes in gasolina and aerosols of Los Angeles Basin, California. Science 1985, 147, 147–148.
[118]  Ault, W.A.; Senechal, R.G.; Erleback, W.E. Isotopic composition as a natural tracer of lead in the environment. Environ. Sci. Technol. 1970, 4, 305–313.
[119]  Chiaradia, M.; Cupelin, F. Behaviour of airborne lead and temporal variations of its source effects in Geneva (Switzerland): Comparison of anthropogenic versus natural processes. Atmos. Environ. 2000, 34, 959–971, doi:10.1016/S1352-2310(99)00213-7.
[120]  Gulson, B.L.; Howarth, D.; Mizon, K.J.; Waw, A.J.; Korsch, M.J.; Davis, J.J. The source of lead in humans from Broken Hill mining community. Environ. Geochem. Health 1994, 16, 19–25, doi:10.1007/BF00149589.
[121]  Gulson, B.L.; Mizon, K.J.; Korsch, M.J.; Howarth, D. Importance of monitoring family members in establishing sources and pathways of lead in blood. Sci. Total Environ. 1996, 188, 173–182, doi:10.1016/0048-9697(96)05170-4.
[122]  Gulson, B.L.; Mizon, K.J.; Davis, J.D.; Palmer, J.M.; Vimpani, G. Identification of sources of led in children in a primary zinc-led smelter environment. Environ. Health Persp. 2004, 112, 52–60.
[123]  Rosman, K.J.R.; Chisolm, W.; Boutron, C.F.; Candelone, J.P.; Gorlach, U. Isotopic evidence for the source of lead in Greenland snows since the late 1960s. Nature 1993, 362, 333–334, doi:10.1038/362333a0.
[124]  Rosman, K.J.R.; Chisolm, W.; Boutron, C.F.; Candelone, J.P.; Patterson, C.C. Anthropogenic lead isotopes in Antarctica. Geophy. Res. Lett. 1994, 21, 2669–2672, doi:10.1029/94GL02603.
[125]  Rosmann, K.J.R.; Chisolm, W.; Hong, S.; Candelone, J.P.; Boutron, C.F. Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 B.C. to 300 A.D. Environ. Sci. Technol. 1997, 31, 3413–3416, doi:10.1021/es970038k.
[126]  Shotyk, W.; Zheng, J.C.; Krachler, M.; Zdanowicz, C.; Koerner, R.; Fisher, D. Predominance of industrial Pb in recent snow (1994–2004) and ice (1842–1996) from Devon Island, Arctic Canada. Geophys. Res. Lett. 2005, 32, L21814, doi:10.1029/2005GL023860.
[127]  Veysseyre, A.M.; Bollhofer, A.F.; Rosman, K.J.R.; Ferrari, C.P.; Boutron, C.F. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotope ratios. Environ. Sci. Technol. 2001, 35, 4463–4469, doi:10.1021/es0105717.
[128]  Gulson, B.L.; Tiller, K.G.; Mizon, K.J.; Merry, R.H. Use of lead isotope ratios in soils to identify the source of lead contamination near Adelaide, South Australia. Environ. Sci. Tech. 1981, 15, 691–696, doi:10.1021/es00088a008.
[129]  Steinmann, M.; Stille, P. Rare earth element behavior and Pb, Sr, Nd isotope systematics in a heavy metal contaminated soil. Appl. Geochem. 1997, 12, 607–632, doi:10.1016/S0883-2927(97)00017-6.
[130]  Hansmann, W.; K?ppel, V. Lead-isotopes as tracers of pollutants in soils. Chem. Geol. 2000, 171, 123–144, doi:10.1016/S0009-2541(00)00230-8.
[131]  Mihaljevic, M.; Ettler, V.; Sebek, O.; Strnad, L.; Chrastny, V. Lead isotopic signatures of wine and vineyard soils—Tracers of lead origin. J. Geochem. Explor. 2006, 88, 130–133, doi:10.1016/j.gexplo.2005.08.025.
[132]  Reimann, C.; Flem, B.; Fabian, K.; Birke, M.; Landenberger, A.; Négrel, P.; Demetriades, A.; Hoogewerff, J.; The GEMAS Project Team. Lead and lead isotopes in agricultural soils of Europe—The continental perspective. Appl. Geochem. 2012, 27, 532–542, doi:10.1016/j.apgeochem.2011.12.012.
[133]  Shirahata, H.; Elias, R.W.; Patterson, C. Chronological variations in concentrations and isotopic compositions and anthropogenic atmospheric Pb in sediments of a remote subalpine pond. Geochim. Cosmochim. Ac. 1980, 44, 149–167, doi:10.1016/0016-7037(80)90127-1.
[134]  Petit, D.; Mennesier, J.P.; Lamberts, L. Stable Pb isotopes in pond sediments as tracer of past and present atmospheric Pb pollution in Belgium. Atmos. Environ. 1984, 18, 1189–1193, doi:10.1016/0004-6981(84)90150-1.
[135]  Chiaradia, M.; Chenhall, B.E.; Depers, A.M.; Gulson, B.I.; Jones, B.G. Idenitification of historical lead sources in roof dusts and recent lake sediments from an industrialized area: Indications from lead isotopes. Sci. Total Environ. 1997, 2005, 107–128.
[136]  Foster, I.D.L.; Less, J.A.; Jones, A.R.; Chapman, A.S.; Turner, S.E.; Hodgkinson, R. The possible role of agricultural land drains in sediment delivery to a small reservoir, Worcestershire UK: A multiparameter tracing study. In Structure, Function and Management Implications of Fluvial Sedimentary Systems; Dyer, F.J., Thoms, M.C., Olley, J.M., Eds.; IAHS Publications: Wallingford, UK, 2002; pp. 443–442.
[137]  Shotyk, W.; Weiss, D.; Appleby, P.G.; Cheburkin, A.K.; Frei, R.; Gloor, M.; Kramers, J.D.; Reese, S.; Knaap, W.O.V.D. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 1998, 281, 1635–1640, doi:10.1126/science.281.5383.1635.
[138]  Weiss, D.; Shotyk, W.; Appleby, P.G.; Kramers, J.D.; Cheburkin, A.K. Atmospheric lead deposition since the industrial revolution recorded by five Swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and sources. Environ. Sci. Technol. 1999, 33, 1340–1352, doi:10.1021/es980882q.
[139]  Marcantonio, F.; Flowers, G.C.; Templin, N. Lead contamination in a wetland watershed: Isotopes as fingerprints of pollution. Environ. Geol. 2000, 39, 1070–1076, doi:10.1007/s002549900093.
[140]  Cloy, J.M.; Farmer, J.G.; Graham, M.C.; MacKenzie, A.B.; Cook, G.T. Historical records of atmospheric Pb deposition in four Scottish ombrotropic peat bogs: An isotopic comparison with other records from western Europe and Greenland. Glob. Biogeochem. Cycles 2008, 22, doi:10.1029/2007GB003059.
[141]  Bellis, D.J.; Satake, K.; McLeod, C.W. A comparison of lead isotope ratios in the bark pockets and annual rings of two beech trees collected in Derbyshire and South Yorkshire, UK. Sci. Total Environ. 2004, 32, 105–113, doi:10.1016/j.scitotenv.2003.08.030.
[142]  Bindler, R.; Renberg, I.; Klaminder, J.; Emteryd, O. Tree rings as Pb pollution archives? A comparison of 206Pb/207Pb isotope ratios in pine and other environmental media. Sci. Total Environ. 2004, 319, 173–183, doi:10.1016/S0048-9697(03)00397-8.
[143]  Bi, X.; Feng, X.; Yang, Y.; Li, X.; Shin, G.P.; Li, F.; Qiu, G.; Li, G.; Liu, T.; Fu, Z. Allocation and source attribution of lead and dadmium in maize (Zea mays L.) impacted by smelting emissions. Environ. Pollut. 2009, 157, 834–939.
[144]  Manton, W.I. Sources of lead in blood—Identification by stable isotopes. Arch. Environ. Health 1977, 32, 149–159, doi:10.1080/00039896.1977.10667273.
[145]  Keinonen, M. The isotopic composition of lead in man and the environment in Finland 1966–1987—Isotope ratios of lead as indicators of pollutant source. Sci. Total Environ. 1992, 113, 251–268, doi:10.1016/0048-9697(92)90004-C.
[146]  Labonne, M.; Othamn, D.B.; Lee, J.M. Pb isotopes in mussels as tracers of metal sources and water movements in a lagoon (Thau Basin, S. France). Chem. Geol. 2001, 181, 181–191, doi:10.1016/S0009-2541(01)00281-9.
[147]  Miller, J.R.; Anderson, J.B.; Lechler, P.J.; Kondrad, S.L.; Galbreath, P.F.; Salter, E.B. Influence of temporal variations in water chemistry on the Pb isotopic composition of rainbow trout (Oncorhynchus mykiss). Sci. Total Environ. 2005, 350, 204–224, doi:10.1016/j.scitotenv.2005.01.030.
[148]  Soto-Jimenez, M.F.; Paez-Osuna, F.; Scelfo, G.; Hibdon, S.; Franks, R.; Aggarawl, J.; Flegal, A.R. Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: A study of concentrations and isotopic composition. Mar. Environ. Res. 2008, 66, 451–458, doi:10.1016/j.marenvres.2008.07.009.
[149]  Soto-Jimenez, M.F.; Flegal, A.R. Origin of lead in the Gulf of California ecoregion using stable isotope analysis. J. Geochem. Explor. 2009, 101, 209–217, doi:10.1016/j.gexplo.2008.07.003.
[150]  S?ndergaard, J.; Asmund, G.; Johansen, P.; Elberling, B. Pb isotopes as tracers of mining-related Pb in lichens, seaweed and mussels near a former Pb-Zn mine in West Greenland. Environ. Pollut. 2010, 158, 1319–1326, doi:10.1016/j.envpol.2010.01.006.
[151]  Potot, C.; Féraud, G.; Sch?rer, A.; Barats, A.; Durrieu, G.; Le Poupon, C.; Travi, Y.; Simler, R. Groundwater and river baseline quality using major, trace elements, organic carbon and Sr-Pb-O isotopes in a Mediterranean catchment: The case of the Lower Var Valley (south-eastern France). J. Hydrol. 2012, 472–473, 126–147, doi:10.1016/j.jhydrol.2012.09.023.
[152]  Sangster, D.F.; Outridge, P.M.; Davis, W.J. Stable lead isotope characteristics of lead ore deposits of environmental significance. Environ. Rev. 2000, 8, 115–147, doi:10.1139/a00-008.
[153]  Balcaen, L.; Moens, L.; Vanhaecke, F. Determination of isotope ratios of metals and metalloids by means of ICP mass spectrometry for provenanceing purposes. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 769–786, doi:10.1016/j.sab.2010.06.005.
[154]  Thirwall, M.F. Inter-laboratory and other errors in Pb isotope analyses investigated using Pb-207/Pb-204 double spike. Chem. Geol. 2000, 163, 299–322, doi:10.1016/S0009-2541(99)00135-7.
[155]  Yeager, K.M.; Santschi, P.H.; Herbert, B.E. Suspended sources and tributary effects in the lower reaches of a coastal plain stream as indicated by radionuclides, Loca Bayou, Texas. Environ. Geol. 2005, 47, 382–395, doi:10.1007/s00254-004-1162-5.
[156]  Komarek, M.; Ettler, V.; Chrastny, V.; Milhaljevic, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–572, doi:10.1016/j.envint.2007.10.005.
[157]  Hopper, J.R.; Ross, H.B.; Sturges, W.T.; Barrie, L.A. Regional source discrimination of atmsoperhic aerosols in Europe using the isotopic composition of lead. Tellus 1991, 43B, 45–60.
[158]  Gobiel, C.; Johnson, W.K.; MacDonald, R.W.; Wong, C.S. Sources and burden of lead in St. Lawrence Estuary sediments: Isotopic evidence. Environ. Sci. Technol. 1995, 29, 193–201, doi:10.1021/es00001a025.
[159]  Li, X.D.; Shen, Z.G.; Wai, O.W.H.; Li, Y.S. Chemical forms of Pb, Zn, and Cu in the sediment profiles of the Pearl River Estuary. Mar. Pollut. Bull. 2001, 42, 215–223, doi:10.1016/S0025-326X(00)00145-4.
[160]  Negrel, P.; Kloppman, W.; Garcin, M.; Giot, D. Lead isotope signatures of Holocene fluvial sediments from the Loire River valley. Appl. Geochem. 2004, 19, 957–972, doi:10.1016/j.apgeochem.2003.11.004.
[161]  Xu, B.; Gu, Z.Y.; Zhang, Y.H.; Chen, Y.F.; Lu, Y.W. Sequence extraction and isotope analysis for discriminating the chemical forms and origins of Pb in sediment from Liaodong Bay, China. Arch. Environ. Con. Tox. 2009, 57, 230–238, doi:10.1007/s00244-008-9268-5.
[162]  Shepherd, T.J.; Chenery, S.R.N.; Pashley, V.; Lord, R.A.; Ander, L.E.; Breward, N.; Hobbs, S.F.; Horstwood, M.; Klinck, B.A.; Worral, F. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK. Sci. Total Environ. 2009, 407, 4882–4892, doi:10.1016/j.scitotenv.2009.05.041.
[163]  British Geological Survey; Dunham, K.C. Geology of the Northern Pennine Orefield, Tyne to Stainmore; The Stationery Office: Norwich, UK, 1990.
[164]  Elbaz-Paulichet, F.; Hollinger, P.; Martin, J.M.; Petit, D. Stable lead isotope ratios in major French rivers and estuaries. Sci. Total Environ. 1986, 54, 61–76, doi:10.1016/0048-9697(86)90256-1.
[165]  McGill, R.A.R.; Pearce, J.M.; Fortey, N.J.; Watt, J.; Ault, L.; Parrish, R.R. Contamination source apportionment by PIMMS lead isotope analysis and SEM-image analysis. Environ. Geochem. Health 2003, 25, 25–32, doi:10.1023/A:1021269419788.
[166]  Kurkjan, R.; Dunlap, C.; Flegal, A.R. Long-range downstream effects of urban runoff and acid mine drainage in the Debed River, Armenia: Insights from lead isotope modeling. Appl. Geochem. 2004, 19, 1567–1580.
[167]  Ettler, V.; Mihaljevi?, M.; ?ebeck, O.; Molek, M.; Grygar, T.; Zeman, J. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic. Environ. Pollut. 2006, 142, 409–417, doi:10.1016/j.envpol.2005.10.024.
[168]  Bird, G.; Brewer, P.A.; Macklin, M.G.; Nikolova, M.; Kotsev, T.; Mollov, M.; Swain, C. Pb isotope evidence from contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe. Appl. Geochem. 2010, 25, 1070–1084.
[169]  Bird, G.; Brewer, P.A.; Macklin, M.G.; Nikolova, M.; Kotsev, T.; Mollov, M.; Swain, C. Quantifying sediment-associated dispersal using Pb isotope: Application of binary and multivariate mixing models in the Maritsa catchment, Bulgaria. Environ. Pollut. 2010, 158, 2158–2169.
[170]  Townsend, A.T.; Seen, A.J. Historical lead isotope record of a sediment core from the Derwent River (Tasmania, Australia): A multiple source environment. Sci. Total Environ. 2012, 424, 153–161, doi:10.1016/j.scitotenv.2012.02.011.
[171]  Erel, Y.; Veron, A.; Halicz, L. Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotope ratios. Geochim. Cosmochim. Acta 1997, 61, 4495–4505.
[172]  Miller, J.R.; Lechler, P.J.; Mackin, G.; Germanoski, D.; Villarroel, L.F. Evaluation of particle dispersal from mining and milling operations using lead isotopic fingerprinting techniques, Rio Pilcomayo Basin, Bolivia. Sci. Total Environ. 2007, 384, 355–373, doi:10.1016/j.scitotenv.2007.05.029.
[173]  Church, S.E.; Fey, D.L.; Unruh, D.M. Trace elements and lead isotopes in streambed sediments in streams affected by historical mining. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado; Church, S.E., von Guerard, P., Finger, S.E., Eds.; U.S. Government Printing Office: Washington, DC, USA, 2007; pp. 283–335.
[174]  Hudson-Edwards, K.A.; Macklin, M.G.; Miller, J.R.; Lechler, P.J. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. J. Geochem. Explor. 2001, 72, 229–250, doi:10.1016/S0375-6742(01)00164-9.
[175]  Monna, F.; Lancelot, J.; Croudace, I.W.; Cundy, A.B.; Lewis, J.T. Pb isotopic composition of airborne particulate materials from France and the Southern United Kingdom: Implications for Pb pollution sources in urban areas. Environ. Sci. Technol. 1997, 31, 2277–2286.
[176]  N’Guessan, Y.M.; Probst, J.L.; Bur, T.; Probst, A. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): Where do they come from? Sci. Total Environ. 2009, 407, 2939–2952.
[177]  Ip, C.C.M.; Li, X.D.; Zhang, G.; Wai, O.W.H.; Li, Y.S. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ. Pollut. 2007, 147, 311–323, doi:10.1016/j.envpol.2006.06.028.
[178]  Batista, M.J.; de Oliveira, D.P.S.; Abreu, M.M.; Locutura, J.; Sheperd, T.; Matos, J.; Bel-Lan, A.; Martins, L. Sources, background and enrichments of lead and other elements: Lower Guadiana River. Geoderma 2013, 193–194, 265–274.
[179]  Nelson, B.K.; DePaolo, D.J. Application of Sm-Nd and Rb-Sr isotope systematics to studies of provenance and basin analysis. J. Sediment. Petrol. 1988, 58, 348–357.
[180]  Awwiller, D.N.; Marck, L.E. Diagenetic resetting of Sm-Nd isotope systematics in Wilcox Groups sandstones and shales, San Marcos Arch, south-central Texas. Gulf Coast Assoc. Geol. Soc. Trans. 1989, 39, 321–330.
[181]  McLennan, S.M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev. Miner. Geochem. 1989, 21, 169–200.
[182]  Awwiller, D.N. Geochronology and mass transfer in Gulf Coast mudrocks (south-central Texas, U.S.A.): Rb-Sr, Sm-Nd and REE systematics. Cehm Geol. 1994, 116, 61–84, doi:10.1016/0009-2541(94)90158-9.
[183]  Gao, B.; Liu, Y.; Sun, K.; Liang, X.R.; Peng, P.; Sheng, G.; Fu, J. Precise determination of cadmium and lead isotopic compositions in river sediments. Anal. Chim. Acta 2008, 612, 114–120, doi:10.1016/j.aca.2008.02.020.
[184]  Cloquet, C.; Carignan, J.; Libourel, G.; Sterckeman, T.; Perdrix, E. Tracing source pollution in soils using cadmium and lead isotopes. Environ. Sci. Technol. 2006, 40, 2525–2530.
[185]  Weiss, D.J.; Rehk?mper, M.; Schoenberg, R.; McLaughlin, M.; Kirby, J.; Campbell, P.G.C.; Arnold, T.; Chapman, J.; Peel, K.; Gioia, S. Application of nontraditional stable-isotopes to the study of sources and fate of metals in the environment. Environ. Sci. Technol. 2008, 42, 655–664, doi:10.1021/es0870855.
[186]  Shiel, A.E.; Weis, D.; Orians, K.J. Evaluation of zinc, cadmium, and lead isotope fractionation during smelting and refining. Sci. Total Environ. 2010, 408, 2357–2368, doi:10.1016/j.scitotenv.2010.02.016.
[187]  Shiel, A.E.; Weis, D.; Orians, K.J. Tracing cadmium, zinc, and lead sources in bivalves from the coasts of western Canada and the USA using isotopes. Geochim. Cosmochim. Acta 2012, 76, 175–190, doi:10.1016/j.gca.2011.10.005.
[188]  Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L. Copper isotope fractionation in acid mine drainage. Geochim. Cosmochim. Ac. 2009, 73, 1247–1263, doi:10.1016/j.gca.2008.11.035.
[189]  Zhu, X.K.; Onions, R.K.; Guo, Y.; Belshaw, N.S.; Rickard, D. Determination of natural cu-isotope variation by plasma source mass spectrometry: Implications for use as geochemical tracers. Chem. Geol. 2000, 163, 139–149, doi:10.1016/S0009-2541(99)00076-5.
[190]  Petit, J.C.J.; DeJong, J.; Chou, L.; Mattielli, N. Development of Cu and Zn isotope MC-ICP-MS measurements: Application to suspended particulate matter and sediments from the Scheldt Estuary. Geostand. Geoanal. Res. 2008, 32, 149–166, doi:10.1111/j.1751-908X.2008.00867.x.
[191]  Bergquist, B.; Blum, J.D. The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation. Elements 2009, 5, 353–357, doi:10.2113/gselements.5.6.353.
[192]  Yi, R.; Feng, X.; Shi, W. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review. Appl. Geochem. 2010, 25, 1467–1477.
[193]  Sonke, J.E.; Sch?fer, J.; Chmeleff, J.; Audry, S.; Blanc, G.; Dupré, B. Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chem. Geol. 2010, 279, 90–100, doi:10.1016/j.chemgeo.2010.09.017.
[194]  Rouxel, O.; Ludden, J.; Fouquet, Y. Antimony isotope variations in natural systems and implications for their use as geochemical tracers. Chem. Geol. 2003, 200, 25–40.
[195]  Wilson, L.R. Determination of Trace Element Provenance, Rio Loa Basin, Northern Chile. Master’s Thesis, Department of Chemistry and Physics, Western Carolina University, Cullowee, NC, USA, July 2011.
[196]  Sivry, Y.; Riotte, J.; Sonke, J.E.; Audray, S.; Sch?fer, J.; Viers, J.; Blanc, G.; Freydier, R.; Dupré, B. Zn isotopes as tracers of anthropogenic pollution from Zn-ore smelters, The Riou Mort-Lot River System. Chem. Geol. 2008, 255, 295–304, doi:10.1016/j.chemgeo.2008.06.038.
[197]  Bentahila, Y.; Othman, B.; Luck, J.M. Stontium, lead, and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan orogen. Chem. Geol. 2008, 248, 62–82, doi:10.1016/j.chemgeo.2007.10.024.
[198]  Wombacher, F.; Rahk?mper, M.; Mezger, K. Determination of the massdependence of cadmium isotope fractionation during evaporation. Geochim. Cosmochim. Acta 2004, 68, 2349–2357, doi:10.1016/j.gca.2003.12.013.
[199]  Rahk?mper, M.; Wombacher, F.; Horner, T.J.; Xue, Z. Natural and anthropogenic cd isotope variations. In Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry; Baskarn, M., Ed.; Springer-Verlag: Berlin, Germany, 2011; pp. 125–154.
[200]  Bullen, T.D. Stable isotope of transition and post-transition metals as tracers in environmental studies. In Handbook of Environmental Isotope Geochemistry; Baskarn, M., Ed.; Springer-Verlag: Berlin, Germany, 2011; pp. 177–203.
[201]  Geagea, M.L.; Stille, P.; Gauthier-Lafaye, F.; Millet, M. Tracing of industrial aerosol sources in an urban environment using Pb, Sr, and Nd isotopes. Environ. Sci. Tech. 2008, 42, 692–698, doi:10.1021/es071704c.
[202]  Weiss, D.J.; Rausch, N.; Mason, T.F.D.; Coles, B.J.; Wilkinson, J.J.; Ukonmaanaho, L.; Nieminen, T. Geochim. Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochim. Cosmochim. Acta 2007, 71, 942–960, doi:10.1016/j.gca.2006.10.018.
[203]  Cloquet, C.; Carignan, J.; Lehmann, M.R.; Vanhaecke, F. Variation in the isotopic compositon of zinc in the natural environment and the use of zinc isotopes in biogeosciences: A review. Anal. Bioanal. Chem. 2008, 390, 451–463, doi:10.1007/s00216-007-1635-y.
[204]  Chen, J.; Gaillardet, J.; Louvat, P. Zinc isotopes in the Seine River waters, France: A probe of anthropogenic contamination. Environ. Sci. Technol. 2008, 42, 6494–6501.
[205]  Aranda, S.; Borrok, D.M.; Wanty, R.B.; Balistrien, L.S. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage. Sci. Total Environ. 2012, 420, 202–213, doi:10.1016/j.scitotenv.2012.01.015.
[206]  Wanty, R.B.; Podda, F.; de Giudici, G.; Cidu, R.; Lattanzi, P. Zinc isotope and transition-element dynamics accompanying hydrozincite biomineralization in the Rio Naracauli, Sardinia, Italy. Chem. Geol. 2013, 337-338, 1–10.
[207]  Lambelet, M.; Rehk?mper, M.; van de Flierdt, T.; Xue, Z.; Kreissig, K.; Coles, B.; Porcelli, D.; Andersson, P. Isotopic analysis of Cd in the mixing zone of Siberian rivers with the Arctic Ocean-New constraints on marine Cd cycling and the isotope composition of riverine Cd. Earth Plant. Sci. Lett. 2013, 361, 64–73, doi:10.1016/j.epsl.2012.11.034.
[208]  Cloquet, C.; Rouxel, O.; Carignan, J.; Libourel, G. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS. Geostand. Geoanal. Res. 2005, 29, 95–106.
[209]  Ripperger, S.; Rehk?mper, M. Precis determination of cadmium isotope fractionation in seawater by double spike MC-ICP-MS. Geochem. Cosmochim. Acta 2007, 71, 631–642.
[210]  Bullen, T.D.; Walczyk, T. Environmental and Biomedical application of natural metal stable isotope variations. Elements 2009, 5, 381–385, doi:10.2113/gselements.5.6.381.
[211]  Mathur, R.; Ruiz, J.; Titley, S.; Liermann, L.; Buss, H.; Brantley, S. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta 2005, 69, 5233–5246, doi:10.1016/j.gca.2005.06.022.
[212]  Zink, S.; Schoenberg, R.; Staubwasser, M. Isotope fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media. Geochim. Cosmochim. Acta 2010, 5729–5745.
[213]  Kitchen, J.W.; Johnson, T.M.; Bullen, T.D.; Zhu, J.; Raddatz, A. Chromium isotope fractionation factors for reduction of Cr(VI) by aqueous Fe(II) and organic molecules. Geochim. Cosmochim. Acta 2012, 89, 190–201, doi:10.1016/j.gca.2012.04.049.
[214]  Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed. Appl. Geochem. 2009, 24, 1270–1277, doi:10.1016/j.apgeochem.2009.03.010.
[215]  Fernandez, A.; Borrok, D.M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulphide-rich rock. Chem. Geol. 2009, 264, 1–12, doi:10.1016/j.chemgeo.2009.01.024.
[216]  Hoefs, J. Stable Isotope Geochemistry; Springer Verlag: New York, NY, USA, 2009.
[217]  Bullen, T.D. Chromium Stable Isotopes as a New Tool for Forensic Hydrology at Sites Contaminated with Anthropogenic Chromium. In Water-Rock Interactions, Proceedings of 12th International Symposium on Water-Rock Interactions (WRI-12), Kunming, China, 31 July–5 August 2007; Bullen, T.D., Wang, Y., Eds.; Taylor & Francis: London, UK, 2007; pp. 699–702.
[218]  Raddatz, A.L.; Johnson, T.M.; McLing, T.L. Cr stable isotopes in Snake River plan aquifer groundwater: Evidence for natural reduction of dissolved Cr(VI). Environ. Sci. Technol. 2011, 45, 502–507, doi:10.1021/es102000z.
[219]  Wanner, C.; Eggenberger, U.; Kurz, D.; Zink, S.; M?der, U. A chromate—contaminated site in southern Switzerland-Part I: Site characterization and the use of Cr isotopes to delineate fate and transport. App. Geochem. 2012, 27, 644–654, doi:10.1016/j.apgeochem.2011.11.009.
[220]  Sherman, L.S.; Blum, J.D. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sci. Total Environ. 2013, 448, 163–175, doi:10.1016/j.scitotenv.2012.09.038.
[221]  Hintelmann, H.; Lu, S.Y. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry. Analyst 2003, 128, 636–639.
[222]  Smith, C.N.; Kesler, S.E.; Kaue, B.; Blum, J.D. Mercury isotope fractionation in fossil hydrothermal systems. Geology 2005, 33, 825–828, doi:10.1130/G21863.1.
[223]  Smith, C.N.; Kesler, S.E.; Blum, J.D.; Rytuba, J.J. Isotope geochemistry of mercury isn source rocks, mineral depsoits and spring deposits of the California Coast Ranges, USA. Earth Planet. Sci. Lett. 2008, 269, 399–407, doi:10.1016/j.epsl.2008.02.029.
[224]  Lauretta, D.S.; Klaue, B.; Blum, J.D.; Buseck, P.R. Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites. Geochemica Cosmochim. Acta 2001, 65, 2807–2818, doi:10.1016/S0016-7037(01)00630-5.
[225]  Sonke, J.E.; Zambardi, T.; Toutain, J.P. Indirect gold trap-MC-ICP-MS coupling for Hg stable isotope analysis using a syringe injection interface. J. Anal. Atomic Spectrom. 2008, 23, 569–573, doi:10.1039/b718181g.
[226]  Zambardi, T.; Sonke, J.E.; Toutain, J.P.; Sortino, F.; Shinohara, H. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet. Sci. Lett. 2009, 227, 236–243.
[227]  Jackson, T.A.; Muir, D.C.G.; Vincent, W.F. Historical variations in the stable isotope composition of mercury in Arctic lake sediments. Environ. Sci. Technol. 2004, 38, 2813–2121, doi:10.1021/es0306009.
[228]  Foucher, D.; Hintelmann, H. High-precision measurements of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2006, 384, 1470–1478, doi:10.1007/s00216-006-0373-x.
[229]  Biswas, A.; Blum, J.D.; Bergquist, B.A.; Keeler, G.J.; Xie, Z.Q. Natural mecury isotope variation in coal deposits and organic soils. Environ. Sci. Technol. 2008, 42, 8303–8309, doi:10.1021/es801444b.
[230]  Ghosh, S.; Xu, Y.F.; Humayun, M.; Odom, L. Mass-independent fractionation of mercury isotopes in the environment. Geochem. Geophy. Geosyst. 2008, 9, doi:10.1029/2007GC001827.
[231]  Jackson, T.A.; Whittle, D.M.; Evans, M.S.; Muir, D.C.G. Evidence for mass-independent and mass-dependent fractionation of the stable isotopes of mercury by natural processes in aquatic ecosystems. Appl. Geochem. 2008, 23, 547–571, doi:10.1016/j.apgeochem.2007.12.013.
[232]  Foucher, D.; Ogrinc, N.; Hintelmann, H. Tracing mercury contamination from the Idraja mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements. Environ. Sci. Technol. 2009, 43, 33–49, doi:10.1021/es801772b.
[233]  Gehrke, G.E.; Blum, J.D.; Meyers, P.A. The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochim. Cosmochim. Acta 2009, 73, 1651–1665, doi:10.1016/j.gca.2008.12.012.
[234]  Carignan, J.; Estrade, N.; Sonke, J.E.; Donard, O.F.X. Odd isotope deficits in atmospheric Hg measured in lichens. Environ. Sci. Technol. 2009, 43, 5660–5664, doi:10.1021/es900578v.
[235]  Blum, J.D.; Bergquist, B.A. Reporting of variations in natural isotopic compositions of mercury. Anal. Bioanal. Chem. 2007, 388, 353–359, doi:10.1007/s00216-007-1236-9.
[236]  Feng, X.B.; Foucher, D.; Hintelmann, H.; Yan, H.Y.; He, T.R.; Qiu, G.L. Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ. Sci. Technol. 2010, 44, 3363–3368, doi:10.1021/es9039488.
[237]  Foucher, D.; Hintelmann, H.; Al, T.A.; MacQuarrie, K.T. Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): Tracing mercury contamination and transformations. Chem. Geol. 2013, 336, 87–95, doi:10.1016/j.chemgeo.2012.04.014.
[238]  Yin, R.; Feng, X.; Wang, J.; Li, P.; Liu, J.; Zhang, Y.; Chen, J.; Zheng, L.; Hu, T. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chem. Geol. 2013, 336, 72–79, doi:10.1016/j.chemgeo.2012.04.030.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133