Microbial communities mediating gold cycling occur on gold grains from (sub)-tropical, (semi)-arid, temperate and subarctic environments. The majority of identified species comprising these biofilms are β-Proteobacteria. Some bacteria, e.g., Cupriavidus metallidurans, Delftia acidovorans and Salmonella typhimurium, have developed biochemical responses to deal with highly toxic gold complexes. These include gold specific sensing and efflux, co-utilization of resistance mechanisms for other metals, and excretion of gold-complex-reducing siderophores that ultimately catalyze the biomineralization of nano-particulate, spheroidal and/or bacteriomorphic gold. In turn, the toxicity of gold complexes fosters the development of specialized biofilms on gold grains, and hence the cycling of gold in surface environments. This was not reported on isoferroplatinum grains under most near-surface environments, due to the lower toxicity of mobile platinum complexes. The discovery of gold-specific microbial responses can now drive the development of geobiological exploration tools, e.g., gold bioindicators and biosensors. Bioindicators employ genetic markers from soils and groundwaters to provide information about gold mineralization processes, while biosensors will allow in-field analyses of gold concentrations in complex sampling media.
References
[1]
Ehrlich, H.L. Geomicrobiology: Its significance for geology. Earth Sci. Rev. 1998, 45, 45–60, doi:10.1016/S0012-8252(98)00034-8.
Southam, G.; Saunders, J.A. The geomicrobiology of ore deposits. Econ. Geol. 2005, 100, 1067–1084, doi:10.2113/gsecongeo.100.6.1067.
[4]
Reith, F.; Dürr, M.; Welch, C.F.; Rogers, S.L. The Geomicrobiology of the Regolith. In Regolith Science; Scott, K., Pain, C.F., Eds.; CSIRO Press: Melbourne, Australia, 2008; pp. 127–159.
[5]
Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643, doi:10.1099/mic.0.037143-0.
[6]
Gold, T. The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 1992, 89, 6045–6049, doi:10.1073/pnas.89.13.6045.
[7]
Fredrickson, J.K.; Balkwill, D.L. Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol. J. 2006, 23, 345–356, doi:10.1080/01490450600875571.
[8]
Fry, J.C.; Parkes, R.J.; Cragg, B.A.; Weightman, A.J.; Webster, G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol. Ecol. 2008, 66, 181–196, doi:10.1111/j.1574-6941.2008.00566.x.
[9]
Reith, F. Life in the deep subsurface. Geology 2011, 39, 287–288, doi:10.1130/focus032011.1.
[10]
Lloyd, J.R. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 2003, 27, 411–425, doi:10.1016/S0168-6445(03)00044-5.
[11]
Reith, F.; Lengke, M.F.; Falconer, D.; Craw, D.; Southam, G. The geomicrobiology of gold. ISME J. 2007, 1, 567–584, doi:10.1038/ismej.2007.75.
[12]
Southam, G.; Lengke, M.F.; Fairbrother, L.; Reith, F. The biogeochemistry of gold. Elements 2009, 5, 303–307, doi:10.2113/gselements.5.5.303.
[13]
Hough, R.M.; Butt, C.R.M.; Reddy, S.M.; Verrall, M. Gold nuggets: Supergene or hypogene? Aust. J. Earth Sci. 2007, 54, 959–964, doi:10.1080/08120090701488289.
Tomkins, A.G. A biogeochemical influence on the secular distribution of orogenic gold. Econ. Geol. 2013, 108, 193–197, doi:10.2113/econgeo.108.2.193.
[17]
Lengke, M.; Southam, G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim. Cosmochim. Acta 2006, 70, 3646–3661, doi:10.1016/j.gca.2006.04.018.
[18]
Lengke, M.F.; Southam, G. The deposition of elemental gold from gold(I)-thiosulfate complex mediated by sulfate-reducing bacterial conditions. Econ. Geol. 2007, 102, 109–126, doi:10.2113/gsecongeo.102.1.109.
[19]
Jones, B.; Renault, R.W.; Rosen, M.R. Biogenicity of gold- and silver-bearing siliceous sinters forming in hot (75 °C) anaerobic spring-waters of Champagne Pool, Waiotapu, North Island, New Zealand. J. Geol. Soc. 2001, 158, 895–911, doi:10.1144/0016-764900-131.
[20]
Zammit, C.M.; Cook, N.; Brugger, J.; Ciobanu, C.L.; Reith, F. The future of biotechnology for gold exploration and processing. Miner. Eng. 2012, 32, 45–53, doi:10.1016/j.mineng.2012.03.016.
[21]
Etschmann, B.E.; Black, J.R.; Grundler, P.V.; Borg, S.; Brewe, D.; McPhail, D.C.; Spiccia, L.; Brugger, J. Copper(I) speciation in mixed thiosulfate-chloride and ammonia-chloride solutions: XAS and UV-Visible spectroscopic studies. RSC Adv. 2011, 1, 1554–1566, doi:10.1039/c1ra00708d.
[22]
Vlassopoulos, D.; Wood, S.A.; Mucci, A. Gold speciation in natural waters: II. The importance of organic complexing—Experiments with some simple model ligands. Geochim. Cosmochim. Acta 1990, 54, 1575–1586, doi:10.1016/0016-7037(90)90392-X.
[23]
Gray, D.J. The Aqueous Chemistry of Gold in the Weathering Environment; Open File Report No 38; Cooperative Research Centre for Landscape Evolution and Mineral Exploration: Wembley, Australia, 1998; p. 57.
[24]
Fairbrother, L.; Etschmann, B.; Brugger, J.; Shapter, J.; Southam, G.; Reith, F. Biomineralization of gold in biofilms of Cupriavidus metallidurans. Environ. Sci. Technol. 2013, 47, 2628–2635, doi:10.1021/es302381d.
[25]
Checa, S.K.; Espariz, M.; Audero, M.E.P.; Botta, P.E.; Spinelli, S.V.; Soncini, F.C. Bacterial sensing of and resistance to gold salts. Mol. Microbiol. 2007, 63, 1307–1318, doi:10.1111/j.1365-2958.2007.05590.x.
[26]
Lengke, M.F.; Fleet, M.E.; Southam, G. Bioaccumulation of gold by filamentous cyanobacteria between 25 and 200 °C. Geomicrobiol. J. 2006, 23, 591–597, doi:10.1080/01490450600964326.
[27]
Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M.A.; Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl. Acad. Sci. USA 2009, 106, 17757–17762, doi:10.1073/pnas.0904583106.
[28]
Reith, F.; Rogers, S.L.; McPhail, D.C.; Webb, D. Biomineralization of gold: Biofilms on bacterioform gold. Science 2006, 313, 233–236, doi:10.1126/science.1125878.
[29]
Lengke, M.F.; Fleet, M.E.; Southam, G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 2006, 22, 2780–2787, doi:10.1021/la052652c.
[30]
Mossman, D.J.; Dyer, B.D. The geochemistry of Witwatersrand-type gold deposits and the possible influence of ancient prokaryotic communities on gold dissolution and precipitation. Precambrian Res. 1985, 30, 303–319, doi:10.1016/0301-9268(85)90084-1.
[31]
Frimmel, H.E.; Le Roex, A.P.; Knight, A.P.; Minter, W.E.L. A case study of the postdepositional alteration of Witatersrand Basal Reef gold placer. Econ. Geol. 1993, 88, 249–265, doi:10.2113/gsecongeo.88.2.249.
[32]
Falconer, D.M.; Craw, D.; Youngson, J.H.; Faure, K. Gold and sulphide minerals in Tertiary quartz pebble conglomerate gold placers, Southland, New Zealand. Ore Geol. Rev. 2006, 28, 525–545, doi:10.1016/j.oregeorev.2005.03.009.
[33]
Falconer, D.M.; Craw, D. Supergene gold mobility: A textual and geochemical study from gold placers in southern New Zealand. Econ. Heol. Spec. Publ. 2009, 14, 77–93.
[34]
Reith, F.; Fairbrother, L.; Nolze, G.; Wilhelmi, O.; Clode, P.L.; Gregg, A.; Parsons, J.E.; Wakelin, S.A.; Pring, A.; Hough, R.; et al. Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology 2010, 38, 843–846, doi:10.1130/G31052.1.
[35]
Fairbrother, L.; Brugger, J.; Shapter, J.; Laird, J.S.; Southam, G.; Reith, F. Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chem. Geol. 2012, 320, 17–31.
[36]
Reith, F.; Stewart, L.; Wakelin, S.A. Supergene gold transformation: Secondary and nano-particulate gold from southern New Zealand. Chem. Geol. 2012, 320, 32–45, doi:10.1016/j.chemgeo.2012.05.021.
[37]
Mann, A.W. Mobility of gold and silver in lateritic weathering profiles: Some observations from Western Australia. Econ. Geol. 1984, 79, 38–49, doi:10.2113/gsecongeo.79.1.38.
[38]
Wilson, A.F. Origin of quartz-free gold nuggets and supergene gold found in laterites and soils—A review and some new observations. Aust. J. Earth Sci. 1984, 31, 303–316.
[39]
Bischoff, G.C.O. The biological origin of bacterioform gold from Australia. Neues Jahrb. Geol. Pal?ontol. Monatshefte 1997, 6, 329–338.
[40]
McCready, A.J.; Parnell, J.; Castro, L. Crystalline placer gold from the Rio Neuquen, Argentina: Implications for the gold budget in placer gold formation. Econ. Geol. 2003, 98, 623–633.
[41]
Chapman, R.J.; Mortensen, J.K.; LeBarge, W.P. Styles of lode gold mineralization contributing to the placers of the Indian River and Black Hills Creek, Yukon Territory, Canada as deduced from microchemical characterization of placer gold grains. Miner. Deposita 2011, 46, 881–903, doi:10.1007/s00126-011-0356-5.
[42]
Knight, J.B.; Morison, S.R.; Mortensen, J.K. The relationship between placer gold particle shape, rimming, and distance of fluvial transport as exemplified by gold from the Klondike District, Yukon Territory, Canada. Econ. Geol. 1999, 94, 635–648, doi:10.2113/gsecongeo.94.5.635.
[43]
Usher, A.; McPhail, D.C.; Brugger, J. A spectrophotometric study of aqueous Au(III) halide–hydroxide complexes at 25–80 °C. Geochim. Cosmochim. Acta 2009, 73, 3359–3380, doi:10.1016/j.gca.2009.01.036.
[44]
Nies, D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339, doi:10.1016/S0168-6445(03)00048-2.
[45]
Nam, S.H.; Lee, W.M.; Shin, Y.J.; Yoon, S.J.; Kim, S.W.; Kwak, J.I.; An, Y.J. Derivation of guideline values for gold(III) ion toxicity limits to protect aquatic ecosystems. Water Res. 2013, doi:10.1016/j.watres.2013.09.019.
[46]
Wiesemann, N.; Mohr, J.; Grosse, C.; Herzberg, M.; Hause, G.; Reith, F.; Nies, D.H. Influence of copper resistance determinants on gold transformation by Cupriavidus metallidurans strain CH34. J. Bacteriol. 2013, 195, 2298–2308, doi:10.1128/JB.01951-12.
[47]
Pontel, L.B.; Audero, M.E.; Espariz, M.; Checa, S.K.; Soncini, F.C. GolS controls the response to gold by the hierarchical induction of Salmonella-specific genes that include a CBA efflux-coding operon. Mol. Mircobiol. 2007, 66, 814–825, doi:10.1111/j.1365-2958.2007.05963.x.
[48]
Von Rozycki, T.; Dietrich, N.H. Cupriavidus metallidurans: Evolution of a metal-resistant bacterium. Antonie Leeuwenhoek 2009, 96, 115–139, doi:10.1007/s10482-008-9284-5.
[49]
Janssen, P.J.; van Houdt, R.; Moors, H.; Monsieurs, P.; Morin, N.; Michaux, A.; Benotmane, M.A.; Leys, N.; Vallaeys, T.; Lapidus, A.; et al. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010, 5, e10433, doi:10.1371/journal.pone.0010433.
[50]
Mergeay, M.; Nies, D.; Schlegel, H.G.; Gerits, J.; Charles, P.; Van Gijsegem, F. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 1985, 162, 328–334.
[51]
Kenney, J.P.L.; Song, Z.; Bunker, B.A.; Fein, J.B. An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates. Geochim. Cosmochim. Acta 2012, 87, 51–60, doi:10.1016/j.gca.2012.03.023.
[52]
Song, Z.; Kenney, J.P.L.; Fein, J.B.; Bunker, B.A. An X-ray absorption fine structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species. Geochim. Cosmochim. Acta 2012, 86, 103–117, doi:10.1016/j.gca.2012.02.030.
[53]
Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 1984; p. 315.
[54]
Reith, F.; Brugger, J.; Zammit, C.M.; Gregg, A.L.; Goldfarb, K.C.; Andersen, G.L.; DeSantis, T.Z.; Piceno, Y.M.; Brodie, E.L.; Lu, Z.; et al. Influence of geogenic factors on microbial communities in metallogenic Australian soils. ISME J. 2012, 6, 2107–2118, doi:10.1038/ismej.2012.48.
[55]
Reith, F.; McPhail, D.C.; Christy, A.G. Bacillus cereus, gold and associated elements in soil and other regolith samples from Tomakin Park Gold Mine in southeastern New South Wales, Australia. J. Geochem. Explor. 2005, 85, 81–98, doi:10.1016/j.gexplo.2004.11.001.
[56]
Magnani, D.; Solioz, M. How Bacteria Handle Copper. In Molecular Microbiology of Heavy Metals; Nies, D., Silver, S., Eds.; Springer: Berlin, Germany, 2007; Volume 6, pp. 259–285.
[57]
Todd, E. Epidemiology of foodborne illness: North Amercia. Lancet 1990, 336, 788–790, doi:10.1016/0140-6736(90)93250-S.
[58]
Checa, S.; Soncini, F. Bacterial gold sensing and resistance. BioMetals 2011, 24, 419–427, doi:10.1007/s10534-010-9393-2.
[59]
Eswaran, J.; Koronakis, E.; Higgins, M.K.; Hughes, C.; Koronakis, V. Three’s company: Component structures brining a closer view of trpartite drug efflux pumps. Curr. Opin. Struct. Biol. 2004, 14, 741–747, doi:10.1016/j.sbi.2004.10.003.
[60]
Wen, A.; Fegan, M.; Hayward, C.; Chakraborty, S.; Sly, L.I. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int. J. Syst. Bacteriol. 1999, 49, 567–576, doi:10.1099/00207713-49-2-567.
[61]
Hoffmann, D.; Kleinsteuber, S.; Muller, R.H.; Babel, W. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology 2003, 149, 2545–2556, doi:10.1099/mic.0.26260-0.
[62]
Johnston, C.W.; Wyatt, M.A.; Li, X.; Ibrahim, A.; Shuster, J.; Southam, G.; Magarvey, N.A. Gold biomineralization by a metallophore from a gold-associated microbe. Nat. Chem. Biol. 2013, 9, 241–243, doi:10.1038/nchembio.1179.
[63]
Schalk, I.J.; Hannauer, M.; Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 2011, 13, 2844–2854, doi:10.1111/j.1462-2920.2011.02556.x.
[64]
Schroefel, A.; Kratosova, G.; Bohunicka, M.; Dobrocka, E.; Vavra, I. Biosynthesis of gold nanoparticles using diatoms–silica-gold and EPS-gold bionanocomposite formation. J. Nanopart. Res. 2011, 13, 3207–3216, doi:10.1007/s11051-011-0221-6.
[65]
Colica, G.; Caparrotta, S.; Bertini, G.; de Philippis, R. Gold biosorption by exopolysaccharide producing cyanobacteria and purple nonsulphur bacteria. J. Appl. Microbiol. 2012, 113, 1380–1388, doi:10.1111/jam.12004.
[66]
Malhotra, A.; Dolma, K.; Kaur, N.; Rathore, Y.S.; Ashish; Mayilraj, S.; Choudhury, A.R. Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour. Technol. 2013, 142, 727–731, doi:10.1016/j.biortech.2013.05.109.
[67]
Brugger, J.; Etschmann, B.; Grosse, C.; Plumridge, C.; Kaminski, J.; Paterson, D.; Shar, S.S.; Ta, C.; Howard, D.L.; de Jonge, M.D.; et al. Can biological toxicity drive the contrasting behavior of platinum and gold in surface environments? Chem. Geol. 2013, 343, 99–110, doi:10.1016/j.chemgeo.2013.02.010.
[68]
Schmidt Mumm, A.; Reith, F. Biomediation of calcrete at the gold anomaly of the Barns prospect, Gawler Craton, South Australia. J. Geochem. Explor. 2007, 92, 13–33, doi:10.1016/j.gexplo.2006.06.003.
[69]
Reith, F.; Wakelin, S.A.; Gregg, A.L.; Schmidt Mumm, A. A microbial pathway for the formation of gold-anomalous calcrete. Chem. Geol. 2009, 258, 315–326, doi:10.1016/j.chemgeo.2008.10.023.
[70]
Reith, F.; Etschmann, B.; Dart, R.C.; Brewe, D.L.; Vogt, S.; Schmidt Mumm, A.; Brugger, J. Distribution and speciation of gold in biogenic and abiogenic calcium carbonates—Implications for the formation of gold anomalous calcrete. Geochim. Cosmochim. Acta 2011, 75, 1942–1956, doi:10.1016/j.gca.2011.01.014.
[71]
Castanier, S.; Le Metayer-Levrel, G.; Perthuisot, J.P. Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sediment. Geol. 1999, 126, 9–23, doi:10.1016/S0037-0738(99)00028-7.
[72]
Vogels, G.D.; van der Drift, C. Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 1976, 40, 403–468.
[73]
Cunin, R.; Glansdorff, N.; Pierard, A.; Stalon, V. Biosythesis and metabolism of arginine in bacteria. Microbiol. Rev. 1986, 50, 314–352.
[74]
Millo, C.; Dupraz, S.; Ader, M.; Guyot, F.; Thaler, C.; Foy, E.; Ménez, B. Carbon isotope fractionation during calcium carbonate precipitation induced by ureolytic bacteria. Geochim. Cosmochim. Acta 2012, 98, 107–124, doi:10.1016/j.gca.2012.08.029.
[75]
Enders, M.S.; Knickerbocker, C.; Titley, S.R.; Southam, G. The role of bacteria in the supergene environment of the morenci porphyry copper deposit, Greenlee County, Arizona. Econ. Geol. 2006, 101, 59–70, doi:10.2113/gsecongeo.101.1.59.
[76]
Nordstrom, D.K.; Southam, G. Geomicrobiology of sulfide mineral oxidation. Rev. Mineral. Geochem. 1997, 35, 361–390.
Zammit, C.M.; Quaranta, D.; Gibson, S.; Zaitouna, A.J.; Ta, C.; Brugger, J.; Lai, R.Y.; Grass, G.; Reith, F. A whole-cell biosensor for the detection of gold. PLoS One 2013, 8, e69292, doi:10.1371/journal.pone.0069292.
[79]
Zammit, C.M.; Cook, N.; Brugger, J.; Ciobanu, C.L.; Reith, F. The Future of Biotechnology for Gold Exploration and Processing. In World Gold; AUSIMM Publishing: Carlton, Australia, 2013; pp. 233–246.
[80]
Rastogi, G.; Sani, R. Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment. In Microbes and Microbial Technology; Ahmad, I., Ahmad, F., Pichtel, J., Eds.; Springer: Berlin, Germany, 2011; pp. 29–57.
[81]
Hu, N.; Zhao, B. Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol. Lett. 2007, 267, 17–22, doi:10.1111/j.1574-6968.2006.00505.x.
[82]
Mergeay, M.; Monchy, S.; Janssen, P.; Houdt, R.; Leys, N. Megaplasmids in Cupriavidus Genus and Metal Resistance. In Microbial Megaplasmids; Schwartz, E., Ed.; Springer: Berlin, Germany, 2009; Volume 11, pp. 209–238.
[83]
Woods, E.J.; Cochrane, C.A.; Percival, S.L. Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Vet. Microbiol. 2009, 138, 325–329, doi:10.1016/j.vetmic.2009.03.023.
[84]
Abou-Shanab, R.A.I.; van Berkum, P.; Angle, J.S. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 2007, 68, 360–367, doi:10.1016/j.chemosphere.2006.12.051.
[85]
Reith, F.; Rogers, S.L. Assessment of bacterial communities in auriferous and non-auriferous soils using genetic and functional fingerprinting. Geomicrobiol. J. 2008, 25, 203–215, doi:10.1080/01490450802081846.
[86]
Wakelin, S.; Anand, R.R.; Macfarlane, C.; Reith, F.; Noble, R.; Rogers, S. Assessing microbiological surface expression over an overburden-covered VMS deposit. J. Geochem. Explor. 2012, 112, 262–271, doi:10.1016/j.gexplo.2011.09.005.
[87]
Wakelin, S.A.; Anand, R.R.; Reith, F.; Gregg, A.L.; Noble, R.R.P.; Goldfarb, K.C.; Andersen, G.L.; DeSantis, T.Z.; Piceno, Y.M.; Brodie, E.L. Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia. FEMS Microbiol. Ecol. 2012, 79, 298–311, doi:10.1111/j.1574-6941.2011.01215.x.