Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 μm × 20 μm was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW.
References
[1]
Saliterman, S. Fundamentals of BioMEMS and Medical Microdevices; Wiley-Interscience: Bellingham, WA, USA, 2006.
[2]
Urban, G.A. BioMEMS; Springer: Dordrecht, The Netherlands, 2006.
[3]
Morshed, B.I.; Shams, M.; Mussivand, T. Identifying severity of electroporation through quantitative image analysis. Appl. Phys. Lett. 2011, 98, 143704, doi:10.1063/1.3575561.
[4]
Lian, M.; Wu, J. Ultrafast micropumping by biased alternating current electrokinetics. Appl. Phys. Lett. 2009, 94, 064101, doi:10.1063/1.3080681.
[5]
Bao, N.; Lu, C. A microfluidic device for physical trapping and electrical lysis of bacterial cells. Appl. Phys. Lett. 2008, 92, 214103, doi:10.1063/1.2937088.
[6]
Wang, H.; Bhunia, A.K.; Lu, C. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous DC voltage. Biosens. Bioelectron. 2006, 22, 582–588, doi:10.1016/j.bios.2006.01.032.
[7]
Bhagat, A.S.; Dasgupta, S.; Banerjee, R.K.; Papautsky, I. Effects of microchannel cross-section and applied electric field on electroosmotic mobility. In Proceedings of Conference Solid-State Sensors, Actuators and Microsystems, Lyon, France, 10–14 June 2007; pp. 1853–1856.
[8]
Lee, D.W.; Cho, Y.H. A continuous electrical cell lysis device using a low DC voltage for a cell transport and rupture. Sens. Actuators B 2007, B 124, 84–89.
[9]
Legendre, L.A.; Bienvenue, J.M.; Roper, M.G.; Ferrance, J.P.; Landers, J.P. A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal. Chem. 2006, 78, 1444–1451, doi:10.1021/ac0516988.
[10]
Hong, J.W.; Hagiwara, H.; Fujii, T.; Machida, H.; Inoue, M.; Seki, M.; Endo, I. Separation and Collection of a Specified DNA Fragment by Chip-based CE System. In Micro Total Analysis Systems 2001; Publisher: Dordrecht, The Netherlands, 2001; pp. 113–114.
[11]
Ulaby, F.T.; Michielssen, E.; Ravaioli, U. Fundamentals of Applied Electromagnetics; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010.
[12]
Jenkins, A.; Chen, C.P.; Spearing, S.; Monaco, L.A.; Steele, A.; Flores, G. Design and modelling of a microfluidic electro-lysis device with controlling plates. In Proceedings of 2006 International MEMS Conference, Singapore, 9–12 May 2006; pp. 620–625.
[13]
Linderholm, P.; Seger, U.; Renaud, P. Analytical expression for electrical field between two facing strip electrodes in microchannel. Electron. Lett. 2006, 42, 145–146, doi:10.1049/el:20063326.
[14]
Chatterjee, A.N.; Aluru, N.R. Combined circuit/device modeling and simulation of integrated microfluidic system. J. Microelectromech. Syst. 2005, 14, 81–95, doi:10.1109/JMEMS.2004.839025.
[15]
Koh, C.G.; Tan, W.; Zhao, M.; Ricco, A.J.; Fan, Z.H. Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal. Chem. 2003, 75, 4591–4598, doi:10.1021/ac0343836.
[16]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Molecular Cell Biology; W. H. Freeman and Co.: New York, NY, USA, 2003.
[17]
Malacinski, G.M. Essentials of Molecular Biology; Jones and Bartlett Publishers: Burlington, MA, USA, 2005.
[18]
Ikeda, N.; Tanaka, N.; Yangida, Y.; Hatsuzawa, T. On-chip single-cell lysis for extracting intracellular material. Jpn. J. Appl. Phys. 2007, 46, 6410–6414, doi:10.1143/JJAP.46.6410.
[19]
Lee, S.W.; Tai, Y. A micro cell lysis device. Sens. Actuators A 1999, 73, 74–79, doi:10.1016/S0924-4247(98)00257-X.
[20]
Huang, Y.; Rubinsky, B. Microfabricated electroporation chip for single cell membrane permeabilization. Sens. Actuators A 2001, 89, 242–249, doi:10.1016/S0924-4247(00)00557-4.
[21]
Huang, Y.; Rubinsky, B. Micro-electroporation: Improving the efficiency and understanding of electrical permeabilization of cells. Biomed. Microdevices 1999, 2, 145–150, doi:10.1023/A:1009901821588.
[22]
Huang, Y.; Rubinsky, B. Flow-through micro-electroporation chip for high efficiency single-cell manipulation. Sens. Actuators A 2003, 104, 205–212, doi:10.1016/S0924-4247(03)00050-5.
[23]
Han, F.; Wang, Y.; Sims, C.E.; Bachman, M.; Chang, R.; Li, G.P.; Allbritton, N.L. Fast electrical lysis of cells for capillary electrophoresis. Anal. Chem. 2003, 75, 3688–3696, doi:10.1021/ac0341970.
[24]
Lu, K.; Wo, A.M.; Lo, Y.; Chen, K.; Lin, C.; Yang, C. Three dimensional electrode array for cell lysis via electroporation. Biosens. Bioelectron. 2006, 28, 24–33.
[25]
Gao, J.; Yin, X.; Fang, Z. Integration of single cell injection, cell lysis, separation and detection of intercellular constituents on a microfluidic chip. Lab Chip 2004, 4, 47–52, doi:10.1039/b310552k.
[26]
Lee, D.W.; Cho, Y. A continuous cell lysis device using focused high electric field and self-generated electroosmotic flow. In Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 22–26 January 2006; pp. 426–429.
[27]
Wang, H.; Lu, C. High-throughput and real-time study of single cell electroporation using microfluidic: Effects of medium osmolarity. Biotechnol. Bioeng. 2006, 95, 1116–1125, doi:10.1002/bit.21066.
[28]
Joshi, R.P.; Schoenbach, K.H. Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: A numerical simulation study. Phys. Rev. E 2000, 62, 1025–1033, doi:10.1103/PhysRevE.62.1025.
[29]
Nilsson, J.W.; Riedel, S.A. Electric Circuits; Prentice-Hall: Upper Saddle River, NJ, USA, 2000.
[30]
Bhagat, A.S.; Dasgupta, S.; Banerjee, R.K.; Papautsky, I. Effects of microchannel cross-section and applied electric field on electroosmotic mobility. In Proceedings of 2007 International Solid-State SensorsActuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 1853–1856.
[31]
Weaver, J.C. Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 2000, 28, 24–33, doi:10.1109/27.842820.
[32]
Dev, S.B.; Rabussay, D.P.; Widera, G.; Hofmann, G.A. Medical applications of electroporation. IEEE Trans. Plasma Sci. 2000, 28, 206–223, doi:10.1109/27.842905.