全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Micromachines  2013 

Recent Trends on Micro/Nanofluidic Single Cell Electroporation

DOI: 10.3390/mi4030333

Keywords: bulk electroporation (BEP), single cell electroporation (SCEP), localized single cell membrane electroporation (LSCMEP), cell transfection, cell lysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The behaviors of cell to cell or cell to environment with their organelles and their intracellular physical or biochemical effects are still not fully understood. Analyzing millions of cells together cannot provide detailed information, such as cell proliferation, differentiation or different responses to external stimuli and intracellular reaction. Thus, single cell level research is becoming a pioneering research area that unveils the interaction details in high temporal and spatial resolution among cells. To analyze the cellular function, single cell electroporation can be conducted by employing a miniaturized device, whose dimension should be similar to that of a single cell. Micro/nanofluidic devices can fulfill this requirement for single cell electroporation. This device is not only useful for cell lysis, cell to cell fusion or separation, insertion of drug, DNA and antibodies inside single cell, but also it can control biochemical, electrical and mechanical parameters using electroporation technique. This device provides better performance such as high transfection efficiency, high cell viability, lower Joule heating effect, less sample contamination, lower toxicity during electroporation experiment when compared to bulk electroporation process. In addition, single organelles within a cell can be analyzed selectively by reducing the electrode size and gap at nanoscale level. This advanced technique can deliver (in/out) biomolecules precisely through a small membrane area (micro to nanoscale area) of the single cell, known as localized single cell membrane electroporation (LSCMEP). These articles emphasize the recent progress in micro/nanofluidic single cell electroporation, which is potentially beneficial for high-efficient therapeutic and delivery applications or understanding cell to cell interaction.

References

[1]  Zimmermann, U.; Pilwat, G.; Friemann, F. Dielectric breakdown of cell membrane. Biophy. J. 1974, 14, 881–899, doi:10.1016/S0006-3495(74)85956-4.
[2]  Weaver, J.C.; Chizmadzhev, Y.A. Theory of electroporation: A review. Bioelectrochem. Bioenerget. 1996, 41, 135–160, doi:10.1016/S0302-4598(96)05062-3.
[3]  Teissie, J.; Golzio, M.; Rols, M.P. Mechanism of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge. Biochim. Biophys. Acta. 2005, 1724, 270–280, doi:10.1016/j.bbagen.2005.05.006.
[4]  Escoffre, J.M.; Porter, T.; Wasungu, L.; Teissie, J.; Dean, D.; Rols, M.P. What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol. Biotechnol. 2009, 41, 286–295, doi:10.1007/s12033-008-9121-0.
[5]  Neu, W.K.; Neu, J.C. Theory of Electroporation. In Cardiac Bioelectric Therapy; Efimov, I.R., Kroll, M.W., Tchou, P.J., Eds.; Springer: New York, NY, USA, 2009; pp. 133–134.
[6]  Ho, S.Y.; Mittal, G.S.; Cross, J.D. Effect of high electric field pulses on the activity of selected enzymes. J. Food Eng. 1997, 31, 69–84, doi:10.1016/S0260-8774(96)00052-0.
[7]  Prasanna, G.L.; Panda, T. Electroporation: Basic principles, practical consideration and applications in molecular biology. Bioprocess Eng. 1997, 16, 261–264, doi:10.1007/s004490050319.
[8]  Serpersu, E.H.; Tsong, T.Y.; Kinosita, K. Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim. Biophys. Acta 1985, 812, 779–785, doi:10.1016/0005-2736(85)90272-X.
[9]  Tsong, T.Y.; Kinosita, K. Use of voltage pulses for the pore opening and drug loading and the subsequent resealing of red blood cells. Bibliotheca Haematologica 1985, 51, 108–114.
[10]  Schoenbach, K.H.; Beebe, S.J.; Buescher, E.S. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 2001, 22, 440–448, doi:10.1002/bem.71.
[11]  Chen, N.; Schoenbach, K.H.; Kolb, J.F.; Swanson, R.J.; Garner, A.L.; Yang, J.; Joshi, R.P.; Beebe, S.J. Leukemic cell intracellular responses to nanosecond electric fields. Biochem. Biophys. Res. Commun. 2004, 317, 421–427, doi:10.1016/j.bbrc.2004.03.063.
[12]  DeBruin, K.A.; Krassowska, W. Modelling electroporation in a single cell. I. Effects of field strength and rest potential. Boiphys. J. 1999, 77, 1213–1224, doi:10.1016/S0006-3495(99)76973-0.
[13]  DeBruin, K.A.; Krassowska, W. Modelling electroporation in a single cell. II. Effects of ionic concentrations. Biophys. J. 1999, 77, 1225–1233, doi:10.1016/S0006-3495(99)76974-2.
[14]  Movahed, S.; Li, D. Microfluidics cell electroporation. Microfluid Nanofluid 2011, 10, 703–734, doi:10.1007/s10404-010-0716-y.
[15]  Chang, D.C.; Chassy, B.M.; Saunders, J.A. Guide to Electroporation and Electrofusion; Academic: San Diego, CA, USA, 1992.
[16]  Tsong, T.Y. Electroporation of cell membranes. Biophys. J. 1991, 60, 297–306, doi:10.1016/S0006-3495(91)82054-9.
[17]  Neumann, E.; Sowers, A.E.; Jordan, C.A. Electroporation and Electrofusion in Cell Biology; Plenum Press: New York, NY, USA, 1989.
[18]  Teissie, J.; Rols, M.P. An experimental evalution of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 1993, 65, 409–413, doi:10.1016/S0006-3495(93)81052-X.
[19]  Zimmermann, U. Electric field-mediated fusion and related electric phenomena. Biochim. Biophys. Acta 1982, 694, 222–227.
[20]  Stampfli, R. Reversible electric breakdown of the excitable membrane of a Ranvier node. Ann. Acad. Bras. Cien. 1958, 30, 57–63.
[21]  Rubinsky, B. Irreversible electroporation in medicine. Technol. Cancer Res. Treat. 2007, 6, 255–259.
[22]  Nollet, J.A. Researches Sur Les Causes Particulieres Des Phenomenes Electriques. (in French); Chez H.L. Guerin & L.F. Delatour: Paris, France, 1754.
[23]  Fox, M.B.; Esveld, D.C.; Valero, A.; Luttge, R.; Mastwijk, H.C.; Bartels, P.V.; ven den Berg, A.; Boom, R.M. Electroporation of cells in microfluidic devices: A review. Anal. Bional Chem. 2006, 385, 474–485, doi:10.1007/s00216-006-0327-3.
[24]  Lee, W.G.; Demirci, U.; Khademhosseini, A. Microscale electroporation: Challenges and perspectives for clinical applications. Integr. Biol. 2009, 1, 242–251, doi:10.1039/b819201d.
[25]  Wang, S.; Lee, L.J. Micro-/Nanofluidics based cell electroporation. 2013, 7, doi:10.1063/1.4774071.
[26]  Wang, M.; Orwar, O.; Olofsson, J.; Weber, S.G. Single cell electroporation: Review. Anal. Bional. Chem. 2010, 397, 3225–3248, doi:10.1007/s00216-010-3715-7.
[27]  Chen, S.-C.; Santra, T.S.; Chang, C.-J.; Chen, T.-J.; Wang, P.-C.; Tseng, F.-G. Delivery of molecules into cells using localized single cell electroporation on ITO microelectrode based transparent chip. Biomed. Microdevices 2012, 14, 811–817, doi:10.1007/s10544-012-9660-9.
[28]  Kim, S.K.; Kim, J.H.; Kim, K.P.; Chung, T.K. Continuous low voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges. Anal. Chem. 2007, 79, 7761–7766, doi:10.1021/ac071197h.
[29]  Nawarathna, D.; Unal, K.; Wickramasinghe, H.K. Localized electroporation and molecular delivery into single living cells by atomic force microscopy. Appl. Phys. Lett. 2008, 93, 153111, doi:10.1063/1.2981568.
[30]  Boukany, P.E.; Morss, A.; Liao, W.-C.; Henslee, B.; Jung, H.C.; Zhang, X.; Yu, B.; Wang, X.; Wu, Y.; Li, L.; et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat. Nanotecnol. 2011, 6, 747–754, doi:10.1038/nnano.2011.164.
[31]  Weaver, J.C. Electroporation of cell and tissues. IEEE Trans. Plasma Sci. 2000, 28, 24–33, doi:10.1109/27.842820.
[32]  Kinosita, K.; Hibino, M.; Itoh, H.; Shigemori, M.; Hirano, K.; Kirino, Y.; Hayakawa, T. Events of Membrane Electroporation Visualized on a Time Scale from Microsecond to Nanoseconds. In Guide to Electroporationand Electrofusion; Chang, D.C., Chassy, B.M., Saunders, J.A., Sowers, A.E., Eds.; Academic Press: Orlando, FL, USA, 1992; pp. 29–46.
[33]  Neumann, E.; Rosenheck, R. Permeability induced by electric impulsions in vesicular membranes. J. Membr. Biol. 1972, 10, 279–290, doi:10.1007/BF01867861.
[34]  Gabriel, B.; Teissie, J. Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys. J. 1997, 73, 2630–2637, doi:10.1016/S0006-3495(97)78292-4.
[35]  Lundqvist, J.A.; Sahlin, F.; Aberg, M.A.; Strimberg, A.; Eriksson, P.S.; Orwar, O. Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. Proc. Natl. Acad. Sci. USA 1998, 95, 10356–10360, doi:10.1073/pnas.95.18.10356.
[36]  Valero, A.; Merino, F.; Wolbers, F.; Luttge, R.; Vermes, I.; Andersson, H.; van den Berg, A. Apoptotic cell death dynamics of HL 60 cells studied using a microfluidic cell tarp device. Lab Chip 2005, 5, 49–55, doi:10.1039/b415813j.
[37]  Suehiro, J.; Yatsunami, R.; Hamada, R.; Hara, M. Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method. J. Phys. D Appl. Phys. 1999, 32, 2814–2820, doi:10.1088/0022-3727/32/21/316.
[38]  Suehiro, J.; Shutou, M.; Hatano, T.; Hra, M. High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization. Sens. Actuators B 2003, 96, 144–151, doi:10.1016/S0925-4005(03)00517-3.
[39]  Suehiro, J.; Hatano, T.; Shutou, M.; Hra, M. Improvement of electric pulse shape of electropermeabilization-assisted dielectrophoretic impedance measurement for high sensitive bacteria detection. Sens. Actuators B 2005, 109, 209–215, doi:10.1016/j.snb.2004.12.048.
[40]  Loomis-Husselbee, J.W.; Cullen, P.J.; Irvine, R.F.; Dawson, A.P. Electroporation can cause artifacts due to solubilization of cations from the electrode plates. Biochem. J. 1991, 277, 883–885.
[41]  Lin, Y.C.; Jen, C.M.; Huang, M.Y.; Wu, C.Y.; Lin, X.Y. Electroporation microchips for continuous gene transfection. Sens. Actuators B 2001, 79, 137–143, doi:10.1016/S0925-4005(01)00859-0.
[42]  Lin, Y.C.; Li, M.; Fan, C.S.; Wu, L.W. A microchip for electroporation of primary endothelial cells. Sens. Actuators A 2003, 108, 12–19, doi:10.1016/j.sna.2003.05.002.
[43]  Knorr, D.; Angersbach, A.; Eshtiaghi, M.N.; Heinz, V.; Lee, D. Processing concepts based on high intensity electric field pulses. Trends Food Sci. Technol. 2001, 12, 129–135, doi:10.1016/S0924-2244(01)00069-3.
[44]  Pol, I.E. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. App. Enviro. Microbial. 2000, 66, 428–430, doi:10.1128/AEM.66.1.428-430.2000.
[45]  Fox, M.B.; Esveld, E.; Luttge, R.; Boom, R. A new pulsed electric field microreactor: Comparison between the laboratory and microscale. Lab Chip 2005, 5, 943–948, doi:10.1039/b503704b.
[46]  Sedgwick, H.; Caron, F.; Monaghan, P.B.; Kolch, W.; Cooper, J.M. Lab-on-a-chip technologies for proteomic analysis from isolated cells. J. R. Soc. Interface 2008, 5, S123–S130, doi:10.1098/rsif.2008.0169.focus.
[47]  De la Rosa, C.; Prakash, R.; Tilley, P.A.; Fox, J.D.; Kaler, K.V. Integrated microfluidic systems for sample preparation and detection of respiratory pathogen bordetella pertussis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2007, 6303–6306.
[48]  Wang, J.; Bao, N.; Paris, L.L.; Wang, H.Y.; Geahlen, R.L.; Lu, C. Detection of kinase translocation using microfluidic electroporative flow cytometry. Anal. Chem. 2008, 80, 1087–1093, doi:10.1021/ac702065e.
[49]  Wang, H.Y.; Lu, C. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply. Biotechnol. Bioeng. 2008, 8, 62–67.
[50]  Olofsson, J.; Levin, M.; Stromberg, A.; Weber, S.G.; Ryttsen, F.; Orwar, O. Scanning electroporation of selected areas of adherent cell cultures. Anal. Chem. 2007, 79, 4410–4418, doi:10.1021/ac062140i.
[51]  Zudans, I.; Agarwal, A.; Orwar, O.; Weber, S.G. Numerical calculations of single-cell electroporation with an electrolyte-filled capillary. Biophys. J. 2007, 92, 3696–3705, doi:10.1529/biophysj.106.097683.
[52]  Agarwal, A.; Zudans, I.; Weber, E.A.; Olofsson, J.; Orwar, O.; Weber, S.G. Effect of cell size and shape on single-cell electroporation. Anal. Chem. 2007, 79, 3589–3596, doi:10.1021/ac062049e.
[53]  Olofsson, J.; Nolkrantz, K.; Ryttsen, F.; Lambie, B.A.; Weber, S.G.; Orwar, O. Single cell electroporation. Curr. Opin. Biotechnol. 2003, 14, 29–34.
[54]  Ryttsen, F.; Farre, C.; Brennan, C.; Weber, S.G.; Nolkrantz, K.; Jardemark, K.; Chiu, D.T.; Orwar, O. Characterization of single cell electroporation by using patch-clamp and fluorescence microscopy. Biophys. J. 2000, 79, 1993–2001, doi:10.1016/S0006-3495(00)76447-2.
[55]  Nolkrantz, K.; Farre, C.; Brederlau, A.; Karlsson, R.I.; Brennan, C.; Erikssson, P.S.; Weber, S.G.; Sandberg, M.; Orwar, O. Electroporation of single cells and tissues with an electrolyte filled capillary. Anal. Chem. 2001, 73, 4469–4477, doi:10.1021/ac010403x.
[56]  Fei, Z.; Wang, S.; Xie, Y.; Henslee, B.E.; Koh, C.G.; Lee, L.J. Gene transfection of mammalian cells using membrane sandwich electroporation. Anal. Chem. 2007, 79, 5719–5722, doi:10.1021/ac070482y.
[57]  Fei, Z.; Hu, X.; Choi, H.-W.; Wang, S.; Farson, D.; Lee, L.J. Micronozzle array enhanced sandwich electroporation of embryonic stem cells. Anal. Chem. 2010, 82, 353–358, doi:10.1021/ac902041h.
[58]  Vassanelli, S.; Bandiera, L.; Borgo, M.; Cellere, G.; Santoni, L.; Bersani, C.; Salamon, M.; Zaccolo, M.; Lorenzelli, L.; Girardi, S.; et al. Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray. New Biotechnol. 2008, 25, 55–67.
[59]  Vally, J.K.; Hsu, H.-Y.; Neale, S.; Ohta, A.T.; Jamshidi, A.; Wu, M.C. Assessment of Single Cell Viability Following Light Induced Electroporation through Use of On-Chip Microfluidics. In Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009; pp. 411–414.
[60]  Valley, J.K.; Neale, S.; Hsu, H.-Y.; Ohta, A.T.; Jamshidi, A.; Wu, M.C. Parallel single-cell light-induced electroporeation and dielectrophoretic manipulation. Lab Chip 2009, 9, 1714–1720, doi:10.1039/b821678a.
[61]  Brennan, D.; Justice, J.; Corbett, B.; McCarthy, T.; Galvin, P. Emerging optofluidic technologies for point-of-care genetic analysis systems: A review. Anal. Bioanal. Chem. 2009, 395, 621–636, doi:10.1007/s00216-009-2826-5.
[62]  Lin, Y.-H.; Lee, G.-B. An optically induced cell lysis device using dielectrophoresis. Appl. Phys. Lett. 2009, 94, 033901, doi:10.1063/1.3072593.
[63]  Sott, K.; Eriksson, E.; Petelenz, E.; Goksor, M. Optical system for single cell analysis. Expert. Opin. Drug Discov. 2008, 3, 1323–1344, doi:10.1517/17460441.3.11.1323.
[64]  Yang, S.-M.; Yu, T.-M.; Huang, H.-P.; Ku, M.-Y.; Hsu, L.; Liu, C.H. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. Opt. Lett. 2010, 35, 1959–1961, doi:10.1364/OL.35.001959.
[65]  Yang, S.-M.; Yu, T.-M.; Huang, H.-P.; Ku, M.-Y.; Tseng, S.-Y.; Tsai, C.-L.; Chen, H.P.; Hsu, L.; Liu, C.-H. Light-driven manipulation of pico-bubbles on a TiOPc-based optoelectronic chip. Appl. Phys. Lett. 2011, 98, 153512, doi:10.1063/1.3580760.
[66]  Huang, Y.; Rubinsky, B. Micro-electroporation: Improving the efficiency and understanding of electrical permeabilization of cells. Biomed. Microdevice. 1999, 2, 145–150, doi:10.1023/A:1009901821588.
[67]  McClain, M.A.; Culbertson, C.T.; Jacobson, S.C.; Allabritton, N.L.; Sims, C.E.; Ramsey, J.M. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 2003, 75, 5646–5655, doi:10.1021/ac0346510.
[68]  Gao, J.; Yin, X.F.; Fang, Z.L. Intergation of single cell injection, cell lysis separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 2004, 4, 47–52, doi:10.1039/b310552k.
[69]  Shin, Y.S.; Cho, K.; Kim, J.K.; Lim, S.H.; Park, C.H.; Lee, K.B.; Park, Y.; Chung, C.; Han, D.-C.; Chang, J.K. Electrotransfection of mammalian cells using microchannel-type electroporation chip. Anal. Chem. 2004, 76, 7045–7052, doi:10.1021/ac0496291.
[70]  Wang, H.-Y.; Lu, C. Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal. Chem. 2006, 78, 5158–5164, doi:10.1021/ac060733n.
[71]  Wang, H.-Y.; Bhunia, A.K.; Lu, C. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous DC voltage. Biosens. Bioelectron. 2006, 22, 582–588, doi:10.1016/j.bios.2006.01.032.
[72]  Ikeda, N.; Tanaka, N.; Yanagida, Y.; Hatsuzawa, T. On-chip single-cell lysis for extracting intracellular material. Jpn. J. Appl. Phys. 2007, 46, 6410–6414, doi:10.1143/JJAP.46.6410.
[73]  Valero, A.; Post, J.N.; van Nieuwkasteele, J.W.; Ter Braak, P.M.; Kruijer, W.; van den Berg, A. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 2008, 8, 62–67, doi:10.1039/b713420g.
[74]  Lim, J.K.; Zhou, H.; Tilton, R.D. Liposome rupture and contents release over coplanar microelectrodes arrays. J. Colloid Interface Sci. 2009, 332, 113–121, doi:10.1016/j.jcis.2008.12.035.
[75]  Zhu, T.; Luo, C.; Huang, J.; Xiong, C.; Quyang, Q.; Fang, J. Electroporation based on hydrodynamic focusing of microfluidics with low DC voltage. Biomed. Microdevices 2010, 12, 35–40, doi:10.1007/s10544-009-9355-z.
[76]  Qu, B.; Eu, Y.-J.; Jeong, W.-J.; Kim, D.-P. Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal. Lab Chip 2012, 12, 4483–4488, doi:10.1039/c2lc40360a.
[77]  Jokilaakso, N.; Salm, E.; Chen, A.; Millet, L.; Guevara, C.D.; Dorvel, B.; Reddy, B., Jr.; Karlstrom, A.E.; Chen, Y.; Ji, H.; et al. Ultra-localized single cell electroporation using silicon nanowires. Lab Chip 2013, 13, 336–339, doi:10.1039/c2lc40837f.
[78]  Huang, Y.; Rubinsky, B. Microfabricated electroporation chip for single cell membrane permeabilization. Sens. Actuators A 2001, 89, 242–245, doi:10.1016/S0924-4247(00)00557-4.
[79]  Huang, Y.; Rubinsky, B. Flow through microelectroporation chip for high efficiency single cell genetic manipulation. Sens. Actuators A 2003, 104, 205–212, doi:10.1016/S0924-4247(03)00050-5.
[80]  Khine, M.; Lau, A.; Ionescu-Zanetti, C.; Seo, J.; Lee, L.P. A single cell electroporation chip. Lab Chip 2005, 5, 38–43, doi:10.1039/b408352k.
[81]  Suzuki, T.; Yamamoto, H.; Ohoka, M.; Okonogi, A.; Kabata, H.; Kanno, I.; Washizu, M.; Kotera, H. High Throughput Cell Electroporation Array Fabricated by Single Mask Inclined uv Lithography Exposure and Oxygen Plasma Etching. In Proceedings of the IEEE 14th International Conference on Solid-State Sensors, Actuators, and Microsystems, Lyon, France, 10–14 June 2007; pp. 687–690.
[82]  Ionescu-Zanetti, C.; Blatz, A.; Khine, M. Electrophoresis-assisted single-cell electroporation for efficient intracellular delivery. Biomed. Microdevic. 2008, 10, 113–116, doi:10.1007/s10544-007-9115-x.
[83]  Gac, S.L.; van den Berg, A. Single cell electroporation using microfluidic devices. Methods Mol. Biol. 2012, 853, 65–82, doi:10.1007/978-1-61779-567-1_7.
[84]  Koster, S.; Angile, F.E.; Duan, H.; Agresti, J.J.; Wintner, A.; Schmitz, C.; Rowat, A.C.; Merten, C.A.; Pisignano, D.; Griffiths, A.D.; et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 2008, 8, 1110–1115, doi:10.1039/b802941e.
[85]  He, M.; Edgar, J.S.; Jeffries, G.D.M.; Lorenz, R.M.; Shelby, J.P.; Chiu, D.T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 2005, 77, 1539–1544, doi:10.1021/ac0480850.
[86]  Luo, C.; Yang, X.; Fu, Q.; Sun, M.; Quyang, Q.; Chen, Y.; Ji, H. Picoliter-volume aqueous droplets in oil: Electrochemical detection and yeast cell electroporation. Electrophoresis 2006, 27, 1977–1983, doi:10.1002/elps.200500665.
[87]  Zhan, Y.; Wang, J.; Bao, N.; Lu, C. Electroporation of cells in microfluidic droplets. Anal. Chem. 2009, 81, 2027–2031, doi:10.1021/ac9001172.
[88]  Lu, H.; Schmidt, M.A.; Jensen, K.F. A microfluidic electroporation device for cell lysis. Lab Chip 2005, 5, 23–29, doi:10.1039/b406205a.
[89]  Wang, H.-Y.; Lu, C. High-throughput and real-time study of single cell electroporation using microfluidics: Effects of medium osmolarity. Biotechnol. Bioeng. 2006, 95, 1116–1125, doi:10.1002/bit.21066.
[90]  Li, X.Y.; Li, P.C.H. Microfluidic selection and retention of a single cardiac myocyte, on-chip dye loading, cell concentration by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium. Anal. Chem. 2005, 77, 4315–4322, doi:10.1021/ac048240a.
[91]  Di Carlo, D.; Aghdam, N.; Lee, L.P. Single cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 2006, 78, 4925–4930, doi:10.1021/ac060541s.
[92]  Wheeler, A.R.; Throndset, W.R.; Whelan, R.J.; Leach, A.M.; Zare, R.N.; Liao, Y.H.; Farrell, K.; Manger, I.D.; Daridon, A. Microfluidic device for single-cell analysis. Anal. Chem. 2003, 75, 3581–3586, doi:10.1021/ac0340758.
[93]  Hargis, A.D.; Alarie, J.P.; Ramsey, J.M. Characterization of cell lysis events on a microfluidic device for high-throughput single cell analysis. Electrophoresis 2011, 32, 3172–3179, doi:10.1002/elps.201100229.
[94]  Li, X.; Huang, J.; Tibbits, G.F.; Li, P.C. Real-time monitoring of intracellular calcium dynamic mobilization of a single cardiomyocyte in a microfluidic chip pertaining. Electrophoresis 2007, 28, 4723–4733, doi:10.1002/elps.200700312.
[95]  Mellors, J.S.; Jorabachi, K.; Smith, L.M.; Ramsey, J.M. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal. Chem. 2010, 82, 967–973, doi:10.1021/ac902218y.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133