A mono-dispersed emulsion is of great significance in many chemical, biomedical and industrial applications. The current study reports a new microfluidic chip capable of forming tunable micro-droplets in liquids for emulsification applications. It can precisely generate size-tunable, uniform droplets using flow-focusing channels and a normally-closed valve, which is opened by a pneumatic suction force. Experimental data showed that micro-droplets with a diameter ranging from several to tens of micrometers could be precisely generated with a high uniformity. The droplet size is experimentally found to be dependent on the velocity of the dispersed-phase liquid, which is controlled by the deflection of the suction membrane. Emulsions with droplet sizes ranging from 5.5 to 55 μm are successfully observed. The variation in droplet sizes is from 3.8% to 2.5%. The micro-droplets have a uniform size and droplets smaller than those reported in previous studies are possible with this approach. This new microfluidic device can be promising for emulsification and other related applications.
References
[1]
Wibowo, C.; Ng, K.M. Product-oriented process synthesis and development: Creams and pastes. AIChE J. 2001, 47, 2746–2767, doi:10.1002/aic.690471214.
[2]
Hamouda, T.; Hayes, M.M.; Cao, Z.; Tonda, R.; Johnson, K.; Wright, D.C.; Brisker, J.; Baker, J.R. A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against bacillus species. J. Infect. Dis. 1999, 180, 1939–1949, doi:10.1086/315124.
[3]
Nicolaos, G.; Crauste-Manciet, S.; Farinotti, R.; Brossard, D. Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion. Int. J. Pharm. 2003, 263, 165–171, doi:10.1016/S0378-5173(03)00365-X.
[4]
Rabinovich-Guilatt, L.; Couvreur, P.; Lambert, G.; Dubernet, C. Cationic vectors in ocular drug delivery. J. Drug Target. 2004, 12, 623–633, doi:10.1080/10611860400015910.
[5]
Bivas-Benita, M.; Oudshoorn, M.; Romeijn, S.; van Meijgaarden, K.; Koerten, H.; van der Meulen, H.; Lambert, G.; Ottenhoff, T.; Benita, S.; Junginger, H.; et al. Cationic submicron emulsions for pulmonary DNA immunization. J. Control. Release 2004, 100, 145–155, doi:10.1016/j.jconrel.2004.08.008.
[6]
Fang, J.-Y.; Leu, Y.-L.; Chang, C.-C.; Lin, C.-H.; Tsai, Y.-H. Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Deliv. 2004, 11, 97–105, doi:10.1080/10717540490280697.
[7]
Nakashima, T.; Shimizu, M.; Kukizaki, M. Membrane emulsification by microporous glass. Key Eng. Mater. 1992, 61–62, 513–516, doi:10.4028/www.scientific.net/KEM.61-62.513.
[8]
Charcosset, C.; Limayem, I.; Fessi, H. The membrane emulsification process—A review. J. Chem. Technol. Biotechnol. 2004, 79, 209–218, doi:10.1002/jctb.969.
[9]
Sugiura, S.; Nakajima, M.; Kumazawa, N.; Iwamoto, S.; Seki, M. Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. J. Phys. Chem. B 2002, 106, 9405–9409, doi:10.1021/jp0259871.
[10]
Sugiura, S.; Nakajima, M.; Iwamoto, S.; Seki, M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 2001, 17, 5562–5566, doi:10.1021/la010342y.
[11]
Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366, doi:10.1063/1.1537519.
Xu, S.; Nie, Z.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H.A.; Garstecki, P.; Weibel, D.B.; Gitlin, I.; Whitesides, G.M. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. 2005, 44, 724–728, doi:10.1002/anie.200462226.
[17]
Yobas, L.; Martens, S.; Ong, W.-L.; Ranganathan, N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 2006, 6, 1073–1079, doi:10.1039/b602240e.
[18]
Link, D.R.; Anna, S.L.; Weitz, D.A.; Stone, H.A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 2004, 92, 054503, doi:10.1103/PhysRevLett.92.054503.
[19]
Tan, Y.-C.; Fisher, J.S.; Lee, A.I.; Cristini, V.; Lee, A.P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 2004, 4, 292–298, doi:10.1039/b403280m.
[20]
Nisisako, T.; Okushima, S.; Torii, T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 2005, 1, 23–27, doi:10.1039/b501972a.
[21]
Willaime, H.; Barbier, V.; Kloul, L.; Maine, S.; Tabeling, P. Arnold tongues in a microfluidic drop emitter. Phys. Rev. Lett. 2006, 96, 054501, doi:10.1103/PhysRevLett.96.054501.
[22]
Chen, C.-T.; Lee, G.-B. Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. J. Microelectromech. Syst. 2006, 15, 1492–1498, doi:10.1109/JMEMS.2006.883572.
Montagne, F.; Mondain-Monval, O.; Pichot, C.; Mozzanega, H.; Ela??ssari, A. Preparation and characterization of narrow sized (o/w) magnetic emulsion. J. Magn. Magn. Mater. 2002, 250, 302–312, doi:10.1016/S0304-8853(02)00412-2.
[29]
Nakano, M.; Nakai, N.; Inoue, M.; Takashima, K.; Katsura, S.; Mizuno, A. Electrostatic Droplet-Formation in Water/Oil Flow in a Microchannel System. In Proceedings of the 39th Industry Applications Conference, Seattle, WA, USA, 3–7 October 2004; Volume 2374, pp. 2373–2376.
[30]
Bunyan, H. Optical deformation of emulsion droplets. Master’s Thesis, Durham University, Durham City, UK, 2010.
[31]
Lai, C.-W.; Lin, Y.-H.; Lee, G.-B. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches. Biomed. Microdevices 2008, 10, 749–756, doi:10.1007/s10544-008-9186-3.
[32]
Lan, C.H.; Yang, C.; Lin, S.; Lin, C.H. Microfluidic T-Junction With An Undercut Orifice To Generate Ultra-Small Droplets. In Proceedings of the 5th Asia-Pacific Conference on Transducers and Micro-Nano Technology, Perth, Australia, 2010; p. 33.
[33]
Kuo, C.-H.; Wang, J.-H.; Lee, G.-B. A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve. Electrophoresis 2009, 30, 3228–3235, doi:10.1002/elps.200900112.
Van Mullem, C.J.; Gabriel, K.J.; Fujita, H. Large Deflection Performance of Surface Micromachined Corrugated Diaphragms. In Proceedings of International Conference on Solid-State Sensors and Actuators, Piscataway, NJ, USA, 1991; pp. 1014–1017.
[36]
Huang, S.-H.; Tan, W.-H.; Tseng, F.-G.; Takeuchi, S. A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. J. Micromech. Microeng. 2006, 16, 2336, doi:10.1088/0960-1317/16/11/013.
[37]
Luque, A.; Perdigones, F.A.; Esteve, J.; Montserrat, J.; Ganan-Calvo, A.M.; Quero, J.M. Silicon microdevice for emulsion production using three-dimensional flow focusing. J. Microelectromech. Syst. 2007, 16, 1201–1208, doi:10.1109/JMEMS.2007.901644.
[38]
Abate, A.R.; Romanowsky, M.B.; Agresti, J.J.; Weitz, D.A. Valve-based flow focusing for drop formation. Appl. Phys. Lett. 2009, 94, 023503–023503.
[39]
Guo, F.; Liu, K.; Ji, X.-H.; Ding, H.-J.; Zhang, M.; Zeng, Q.; Liu, W.; Guo, S.-S.; Zhao, X.-Z. Valve-based microfluidic device for droplet on-demand operation and static assay. Appl. Phys. Lett. 2010, 97, 233701–233703, doi:10.1063/1.3521283.
[40]
Romanowsky, M.B.; Heymann, M.; Abate, A.R.; Krummel, A.T.; Fraden, S.; Weitz, D.A. Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Lab Chip 2010, 10, 1521–1524, doi:10.1039/c004050a.