全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Micromachines  2013 

Monodisperse Water-in-Oil-in-Water (W/O/W) Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry

DOI: 10.3390/mi4040402

Keywords: microfluidics, double emulsion, double flow-focusing geometry, flow cytometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we report the application of monodisperse double emulsion droplets, produced in a single step within partially hydrophilic/partially hydrophobic microfluidic devices, as defined containers for quantitative flow cytometric analysis. Samples with varying fluorophore concentrations were generated, and a clear correlation between dye concentration and fluorescence signals was observed.

References

[1]  Seifritz, W. Study of emulsions. J. Phys. Chem. 1925, 29, 738–748, doi:10.1021/j150252a009.
[2]  Engel, R.H.; Riggi, S.J.; Fahrenbach, M.J. Insulin: Intestinal absorption as water-in-oil-in-water emulsions. Nature 1968, 219, 856–857, doi:10.1038/219856a0.
[3]  Gresham, P.A.; Barrett, M.; Smith, S.V.; Schneider, R. Use of a sustained release multiple emulsion to extend the period of radioprotection conferred by cysteamine. Nature 1971, 234, 149–150, doi:10.1038/234149a0.
[4]  Davis, S.S.; Illum, L.; Walker, I.M. In vivo evaluation of an administered emulsion formulation administered intramuscularly. Int. J. Pharmaceut. 1987, 38, 133–137, doi:10.1016/0378-5173(87)90108-6.
[5]  Miyazawa, K.; Yajima, I.; Kaneda, I.; Yanaki, T. Preparation of a new soft capsule for cosmetics. J. Cosmet. Sci. 2005, 51, 239–252.
[6]  Matsumoto, S.; Ueda, Y.; Kita, Y.; Yonezawa, D. Preparation of water-in-olive oil-in-water multiple-phase emulsions in an eatable form. Agric. Biol. Chem. 1978, 42, 739–743, doi:10.1271/bbb1961.42.739.
[7]  Dittrich, W.; G?hde, W. Flow-Through Chamber for Photometers to Measure and Count Particles in a Dispersion Medium. DE 1815352 (A1), 18 December 1968.
[8]  Fattaccioli, J.; Baudry, J.; émerard, J.-D.; Bertrand, E.; Goubault, C; Henry, N.; Bibette, J. Size and fluorescence measurements of individual droplets by flow cytometry. Soft Matter 2009, 5, 2232–2238.
[9]  Griffiths, A.D.; Tawfik, D.S. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 2003, 22, 24–35, doi:10.1093/emboj/cdg014.
[10]  Bernath, K.; Hai, M.; Mastrobattista, E.; Griffiths, A.D.; Magdassi, S.; Tawfik, D.S. In vitro compartmentalization by double emulsions: Sorting and gene enrichment by fluorescence activated cell sorting. Anal. Biochem. 2004, 325, 151–157, doi:10.1016/j.ab.2003.10.005.
[11]  Aharoni, A.; Amitai, G.; Bernath, K.; Magdassi, S.; Tawfik, D.S. High-throughput screening of enzyme libraries: Thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem. Biol. 2005, 12, 1281–1289, doi:10.1016/j.chembiol.2005.09.012.
[12]  Mastrobattista, E.; Taly, V.; Chanudet, E.; Treacy, P.; Kelly, B.T.; Griffiths, A.D. High-throughput screening of enzyme libraries: In vitro evolution of a β-galactosidase by fluorescence-activated sorting of double emulsions. Chem. Biol. 2005, 12, 1291–1300, doi:10.1016/j.chembiol.2005.09.016.
[13]  Leemhuis, H.; Stein, V.; Griffiths, A.D.; Hollfelder, F. New genotype-phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 2005, 15, 472–478, doi:10.1016/j.sbi.2005.07.006.
[14]  Schaerli, Y.; Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst. 2009, 5, 1392–1404, doi:10.1039/b907578j.
[15]  Schaerli, Y.; Kintses, B.; Hollfelder, F.; Lutz, S.; Bornscheuer, U.T. Protein Engineering Handbook; Wiley VCH: Weinheim, Germany, 2012; Volume 3, pp. 73–89.
[16]  Agresti, J.J.; Antipov, E.; Abate, A.R.; Ahn, K.; Rowat, A.C.; Baret, J.C.; Marquez, M.; Klibanov, A.M.; Griffiths, A.D.; Weitz, D.A. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 2010, 107, 4004–4009, doi:10.1073/pnas.0910781107.
[17]  Kintses, B.; Hein, C.; Mohamed, M.F.; Fischlechner, M.; Courtois, F.; Lainé, C.; Hollfelder, F. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 2012, 19, 1001–1009, doi:10.1016/j.chembiol.2012.06.009.
[18]  Baret, J.C.; Miller, O.J.; Taly, V.; Ryckelynck, M.; El-Harrak, A.; Frenz, L.; Rick, C.; Samuels, M.L.; Hutchison, J.B.; Agresti, J.J.; et al. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 2009, 9, 1850–1858, doi:10.1039/b902504a.
[19]  Qin, D.; Xia, Y.; Whitesides, G.M. Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv. Mater. 1996, 8, 917–919, doi:10.1002/adma.19960081110.
[20]  Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984, doi:10.1021/ac980656z.
[21]  Bauer, W.A.C.; Fischlechner, M.; Abell, C.; Huck, W.T.S. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip 2010, 10, 1814–1819, doi:10.1039/c004046k.
[22]  Bauer, W.A.C.; Kotar, J.; Cicuta, P.; Woodward, R.T.; Weaver, J.V.M.; Huck, W.T.S. Microfluidic production of monodisperse functional o/w droplets and study of their reversible pH dependent aggregation behavior. Soft Matter 2011, 7, 4214–4220, doi:10.1039/c1sm05087g.
[23]  Hutter, T.; Bauer, W.A.C.; Elliott, S.R.; Huck, W.T.S. Formation of spherical and non-spherical eutectic gallium-indium liquid-metal microdroplets in microfluidic channels at room temperature. Adv. Funct. Mater. 2012, 22, 2624–2631, doi:10.1002/adfm.201200324.
[24]  Holtze, C.; Rowat, A.C.; Agresti, J.J.; Hutchison, J.B.; Angilè, F.E.; Schmitz, C.H.J.; K?ster, S.; Duan, H.; Humphry, K.J.; Scanga, R.A.; et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 2008, 8, 1632–1639, doi:10.1039/b806706f.
[25]  Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366, doi:10.1063/1.1537519.
[26]  Nisisako, T.; Okushima, S.; Torii, T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 2005, 1, 23–27, doi:10.1039/b501972a.
[27]  Abate, A.R.; Weitz, D.A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 2009, 5, 2030–2032, doi:10.1002/smll.200900569.
[28]  Romanowsky, M.B.; Heymann, M.; Abate, A.R.; Krummel, A.T.; Fraden, S.; Weitz, D.A. Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Lab Chip 2010, 10, 1521–1524, doi:10.1039/c004050a.
[29]  Lanz, E.; Gregor, M.; Slavík, J.; Kotyk, A. Use of FITC as a fluorescent probe for intracellular pH measurement. J. Fluoresc. 1997, 7, 317–319, doi:10.1023/A:1022586127784.
[30]  Lakowicz, J.R. Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer: New York, NY, USA, 2006; pp. 54–57.
[31]  Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T.S. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 2010, 49, 5846–5868, doi:10.1002/anie.200906653.
[32]  Kintses, B.; van Vliet, L.D.; Devenish, S.R.; Hollfelder, F. Microfluidic droplets: New integrated workflows for biological experiments. Curr. Opin. Chem. Biol. 2010, 14, 548–555, doi:10.1016/j.cbpa.2010.08.013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133