Here we report the application of monodisperse double emulsion droplets, produced in a single step within partially hydrophilic/partially hydrophobic microfluidic devices, as defined containers for quantitative flow cytometric analysis. Samples with varying fluorophore concentrations were generated, and a clear correlation between dye concentration and fluorescence signals was observed.
References
[1]
Seifritz, W. Study of emulsions. J. Phys. Chem. 1925, 29, 738–748, doi:10.1021/j150252a009.
Gresham, P.A.; Barrett, M.; Smith, S.V.; Schneider, R. Use of a sustained release multiple emulsion to extend the period of radioprotection conferred by cysteamine. Nature 1971, 234, 149–150, doi:10.1038/234149a0.
[4]
Davis, S.S.; Illum, L.; Walker, I.M. In vivo evaluation of an administered emulsion formulation administered intramuscularly. Int. J. Pharmaceut. 1987, 38, 133–137, doi:10.1016/0378-5173(87)90108-6.
[5]
Miyazawa, K.; Yajima, I.; Kaneda, I.; Yanaki, T. Preparation of a new soft capsule for cosmetics. J. Cosmet. Sci. 2005, 51, 239–252.
[6]
Matsumoto, S.; Ueda, Y.; Kita, Y.; Yonezawa, D. Preparation of water-in-olive oil-in-water multiple-phase emulsions in an eatable form. Agric. Biol. Chem. 1978, 42, 739–743, doi:10.1271/bbb1961.42.739.
[7]
Dittrich, W.; G?hde, W. Flow-Through Chamber for Photometers to Measure and Count Particles in a Dispersion Medium. DE 1815352 (A1), 18 December 1968.
[8]
Fattaccioli, J.; Baudry, J.; émerard, J.-D.; Bertrand, E.; Goubault, C; Henry, N.; Bibette, J. Size and fluorescence measurements of individual droplets by flow cytometry. Soft Matter 2009, 5, 2232–2238.
[9]
Griffiths, A.D.; Tawfik, D.S. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 2003, 22, 24–35, doi:10.1093/emboj/cdg014.
[10]
Bernath, K.; Hai, M.; Mastrobattista, E.; Griffiths, A.D.; Magdassi, S.; Tawfik, D.S. In vitro compartmentalization by double emulsions: Sorting and gene enrichment by fluorescence activated cell sorting. Anal. Biochem. 2004, 325, 151–157, doi:10.1016/j.ab.2003.10.005.
[11]
Aharoni, A.; Amitai, G.; Bernath, K.; Magdassi, S.; Tawfik, D.S. High-throughput screening of enzyme libraries: Thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem. Biol. 2005, 12, 1281–1289, doi:10.1016/j.chembiol.2005.09.012.
[12]
Mastrobattista, E.; Taly, V.; Chanudet, E.; Treacy, P.; Kelly, B.T.; Griffiths, A.D. High-throughput screening of enzyme libraries: In vitro evolution of a β-galactosidase by fluorescence-activated sorting of double emulsions. Chem. Biol. 2005, 12, 1291–1300, doi:10.1016/j.chembiol.2005.09.016.
[13]
Leemhuis, H.; Stein, V.; Griffiths, A.D.; Hollfelder, F. New genotype-phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 2005, 15, 472–478, doi:10.1016/j.sbi.2005.07.006.
[14]
Schaerli, Y.; Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst. 2009, 5, 1392–1404, doi:10.1039/b907578j.
Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366, doi:10.1063/1.1537519.
[26]
Nisisako, T.; Okushima, S.; Torii, T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 2005, 1, 23–27, doi:10.1039/b501972a.
[27]
Abate, A.R.; Weitz, D.A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 2009, 5, 2030–2032, doi:10.1002/smll.200900569.
[28]
Romanowsky, M.B.; Heymann, M.; Abate, A.R.; Krummel, A.T.; Fraden, S.; Weitz, D.A. Functional patterning of PDMS microfluidic devices using integrated chemo-masks. Lab Chip 2010, 10, 1521–1524, doi:10.1039/c004050a.
[29]
Lanz, E.; Gregor, M.; Slavík, J.; Kotyk, A. Use of FITC as a fluorescent probe for intracellular pH measurement. J. Fluoresc. 1997, 7, 317–319, doi:10.1023/A:1022586127784.
[30]
Lakowicz, J.R. Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer: New York, NY, USA, 2006; pp. 54–57.
[31]
Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T.S. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 2010, 49, 5846–5868, doi:10.1002/anie.200906653.
[32]
Kintses, B.; van Vliet, L.D.; Devenish, S.R.; Hollfelder, F. Microfluidic droplets: New integrated workflows for biological experiments. Curr. Opin. Chem. Biol. 2010, 14, 548–555, doi:10.1016/j.cbpa.2010.08.013.