In order to keep up with the advances in nano-fabrication, alternative, cost-efficient lithography techniques need to be implemented. Two of the most promising are nanoimprint lithography (NIL) and stencil lithography. We explore here the possibility of fabricating the stamp using stencil lithography, which has the potential for a cost reduction in some fabrication facilities. We show that the stamps reproduce the membrane aperture patterns within ±10 nm and we validate such stamps by using them to fabricate metallic nanowires down to 100 nm in size.
Brugger, J.; Berenschot, J.W.; Kuiper, S.; Nijdam, W.; Otter, B.; Elwenspoek, M. Resistless patterning of sub-micron structures by evaporation through nanostencils. Microelectron. Eng. 2000, 53, 403–405, doi:10.1016/S0167-9317(00)00343-9.
[3]
Sidler, K.; Vazquez-Mena, O.; Savu, V.; Villanueva, G.; van den Boogaart, M.A.F.; Brugger, J. Resistivity measurements of gold wires fabricated by stencil lithography on flexible polymer substrates. Microelectron. Eng. 2008, 85, 1108–1111, doi:10.1016/j.mee.2007.12.069.
[4]
Deshmukh, M.M.; Ralph, D.C.; Thomas, M.; Silcox, J. Nanofabrication using a stencil mask. Appl. Phys. Lett. 1999, 75, 1631–1633.
[5]
Yan, X.M.; Contreras, A.M.; Koebel, M.M.; Liddle, J.A.; Somorjai, G.A. Parallel fabrication of sub-50-nm uniformly sized nanoparticles by deposition through a patterned silicon nitride nanostencil. Nano. Lett. 2005, 5, 1129–1134, doi:10.1021/nl0506812.
[6]
Villanueva, L.G.; Martin-Olmos, C.; Vazquez-Mena, O.; Montserrat, J.; Langlet, P.; Bausells, J.; Brugger, J. Localized ion implantation through micro/nanostencil masks. IEEE Trans. Nanotechnol. 2011, 10, 940–946, doi:10.1109/TNANO.2010.2090171.
[7]
Villanueva, G.; Vazquez-Mena, O.; van den Boogaart, M.A.F.; Sidler, K.; Pataky, K.; Savu, V.; Brugger, J. Etching of sub-micrometer structures through Stencil. Microelectron. Eng. 2008, 85, 1010–1014, doi:10.1016/j.mee.2007.12.068.
[8]
Villanueva, L.G.; Vazquez-Mena, O.; Martin-Olmos, C.; Savu, V.; Sidler, K.; Montserrat, J.; Langlet, P.; Hibert, C.; Vettiger, P.; Bausells, J.; et al. All-stencil transistor fabrication on 3D silicon substrates. J. Micromech. Microeng. 2012, 22, doi:10.1088/0960-1317/22/9/095022.
[9]
Vazquez-Mena, O.; Sannomiya, T.; Tosun, M.; Villanueva, L.G.; Savu, V.; Voros, J.; Brugger, J. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano. 2012, 6, 5474–5481, doi:10.1021/nn301358n.
[10]
Savu, V.; Neuser, S.; Villanueva, G.; Vazquez-Mena, O.; Sidler, K.; Brugger, J. Stenciled conducting bismuth nanowires. J. Vac. Sci. Technol. B 2010, 28, 169–172.
[11]
Vazquez-Mena, O.; Sannomiya, T.; Villanueva, L.G.; Voros, J.; Brugger, J. Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications. ACS Nano. 2011, 5, 844–853, doi:10.1021/nn1019253.
[12]
Arcamone, J.; van den Boogaart, M.A.F.; Serra-Graells, F.; Fraxedas, J.; Brugger, J.; Perez-Murano, F. Full-wafer fabrication by nanostencil lithography of micro/nanomechanical mass sensors monolithically integrated with CMOS. Nanotechnology 2008, 19, 305302, doi:10.1088/0957-4484/19/30/305302.
[13]
Springer Handbook of Nanotechnology; Bhushan, B., Ed.; Springer-Verlag: Berlin, Germany, 2007; p. 1222.
[14]
Vazquez-Mena, O.; Villanueva, G.; van den Boogaart, M.A.F.; Savu, V.; Brugger, J. Reusability of nanostencils for the patterning of Aluminum nanostructures by selective wet etching. Microelectron. Eng. 2008, 85, 1237–1240.
[15]
Lishchynska, M.; Bourenkov, V.; van den Boogaart, M.A.F.; Doeswijk, L.; Brugger, J.; Greer, J.C. Predicting mask distortion, clogging and pattern transfer for stencil lithography. Microelectron. Eng. 2007, 84, 42–53, doi:10.1016/j.mee.2006.08.003.
[16]
Vazquez-Mena, O.; Sidler, K.; Savu, V.; Park, C.W.; Villanueva, L.G.; Brugger, J. Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections. IEEE Trans. Nanotechnol. 2011, 10, 352–357, doi:10.1109/TNANO.2010.2042724.
[17]
Arcamone, J.; Sanchez-Amores, A.; Montserrat, J.; van den Boogaart, M.A.F.; Brugger, J.; Perez-Murano, F. Dry etching for the correction of gap-induced blurring and improved pattern resolution in nanostencil lithography. J. Micro-Nanolith. Mem. 2007, 6, doi:10.1117/1.2435273.
[18]
Engstrom, D.S.; Savu, V.; Zhu, X.; Bu, I.Y.Y.; Milne, W.I.; Brugger, J.; Boggild, P. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. Nano. Lett. 2011, 11, 1568–1574, doi:10.1021/nl104384b.
[19]
Vazquez-Mena, O.; Villanueva, L.G.; Savu, V.; Sidler, K.; Langlet, P.; Brugger, J. Analysis of the blurring in stencil lithography. Nanotechnology 2009, 20, doi:10.1088/0957-4484/20/41/415303.
[20]
Racz, Z.; Seabaugh, A. Characterization and control of unconfined lateral diffusion under stencil masks. J. Vac. Sci. Technol. B 2007, 25, 857–861, doi:10.1116/1.2737437.