The purpose of this review was to investigate the correlation between magnetism and crystallographic structures as it relates to the martensite transformation of Ni 2MnGa type alloys, which undergo martensite transformation below the Curie temperature. In particular, this paper focused on the physical properties in magnetic fields. Recent researches show that the martensite starting temperature (martensite transformation temperature) T M and the martensite to austenite transformation temperature (reverse martensite temperature) T R of Fe, Cu, or Co-doped Ni–Mn–Ga ferromagnetic shape memory alloys increase when compared to Ni 2MnGa. These alloys show large field dependence of the martensite transformation temperature. The field dependence of the martensite transformation temperature, dT M /dB, is ?4.2 K/T in Ni 41Co 9Mn 32Ga 18. The results of linear thermal strain and magnetization indicate that a magneto-structural transition occurred at T M and magnetic field influences the magnetism and also the crystal structures. Magnetocrystalline anisotropy was also determined and compared with other components of Ni 2MnGa type shape memory alloys. In the last section, magnetic field-induced strain and magnetostriction was determined with some novel alloys.
References
[1]
Ullakko, K.; Huang, J.K.; Kantner, C.; O’Handley, R.C.; Kokorin, V.V. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 1996, 69, 1966–1968, doi:10.1063/1.117637.
[2]
Webster, P.J.; Ziebeck, K.R.A.; Town, S.L.; Peak, M.S. Magnetic order and phase transformation in Ni2MnGa. Philos. Mag. B 1984, 49, 295–310, doi:10.1080/13642817408246515.
[3]
Brown, P.J.; Crangle, J.; Kanomata, T.; Matsumoto, M.; Neumann, K-.U.; Ouladdiaf, B.; Ziebeck, K.R.A. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys. Condens. Matter. 2002, 14, 10159–10171, doi:10.1088/0953-8984/14/43/313.
[4]
Pons, J.; Santamarta, R.; Chernenko, V.A.; Cesari, E. Long-Period martensitic structures of Ni-Mn-Ga alloys studied by high-resolution transmission electron microscopy. J. Appl. Phys. 2005, 97, 083516:1–083516:7.
[5]
Ranjan, R.; Banik, S.; Barman, S.R.; Kumar, U.; Mukhopadhyay, P.K.; Pandey, D. Powder x-ray diffraction study of the thermoelastic martensite transition in Ni2Mn1.05Ga0.95. Phys. Rev. B 2006, 74, 224443:1–224443:2.
[6]
Jiang, C.; Feng, G.; Gong, S.; Xu, H. Effect of Ni excess on phase transformation temperatures of NiMnGa alloys. Mater. Sci. Eng. A 2003, 342, 231–235, doi:10.1016/S0921-5093(02)00288-5.
[7]
Ma, Y.; Jiang, C.; Li, Y.; Xu, H.; Wang, C.; Liu, X. Study of Ni50+xMn25Ga25?x (x = 2–11) as high-temperature shape-memory alloys. Acta Mater. 2007, 55, 1533–1541, doi:10.1016/j.actamat.2006.10.014.
[8]
Ma?osa, L.; Moya, X.; Planes, A.; Krenke, T.; Acet, M.; Wassermann, E.F. Ni-Mn-based magnetic shape memory alloys: Magnetic properties and martensite transformation. Mater. Sci. Eng. A 2008, 481–482, 49–56.
[9]
Sánchez-Alarcos, V.; Pérez-Landazábal, J.I.; Gómez-Polo, C.; Recarte, V. Influence of the atomic order on the magnetic characteristics of a Ni–Mn–Ga ferromagnetic shape memory alloy. J. Magn. Magn. Mater. 2008, 320, e160–e163, doi:10.1016/j.jmmm.2008.02.039.
[10]
Rudajevová, A. Analysis of the thermal expansion characteristics of Ni53.6Mn27.1Ga19.3 alloy. J. Alloys Compd. 2007, 430, 153–157, doi:10.1016/j.jallcom.2006.05.009.
[11]
Zhu, F.Q.; Yang, F.Y.; Chien, C.L.; Ritchie, L.; Xiao, G.; Wu, G.H. Magnetic and thermal properties of Ni–Mn–Ga shape memory alloy with Martensite transition near room temperature. J. Magn. Magn. Mater. 2005, 288, 79–83, doi:10.1016/j.jmmm.2004.08.025.
[12]
Chernenko, V.A.; L’vov, V.A.; Khovailo, V.V.; Takagi, T.; Kanomata, T.; Suzuki, T.; Kainuma, R. Interdependence between the magnetic properties and lattice parameters of Ni–Mn–Ga martensite. J. Phys. Condens. Matter. 2004, 16, 8345–8352.
[13]
Golub, V.O.; Vovk, A.Y.; O’Connor, C.J.; Kotov, V.V.; Yakovenko, P.G.; Ullakko, K. Magnetic and structural properties of nonstoichiometric Ni2MnGa alloys with Ni and Ga excess. J. Appl. Phys. 2003, 93, 8504–8506, doi:10.1063/1.1555978.
[14]
Kim, J.; Inaba, F.; Fukuda, T.; Kakeshita, T. Effect of magnetic field on martensitic transformation temperature in Ni–Mn–Ga ferromagnetic shape memory alloys. Acta Mater. 2006, 54, 493–499, doi:10.1016/j.actamat.2005.09.019.
[15]
González-Comas, A.; Obradó, E.; Mafiosa, L.; Planes, A.; Labarta, A. Magnetoelasticity in the Heusler Ni2MnGa alloy. J. Magn. Magn. Mater. 1999, 196–197, 637–638.
[16]
Lanska, N.; S?derberg, O.; Sozinov, A.; Ge, Y.; Ullakko, K.; Lindroos, V.K. Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 2004, 95, 8074–8078, doi:10.1063/1.1748860.
[17]
Likhachev, A.A.; Ullakko, K. Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 2000, 275, 142–151, doi:10.1016/S0375-9601(00)00561-2.
[18]
Murray, S.J.; Farinelli, M.; Kantner, C.; Huang, J.K.; Allen, S.M.; O’Handley, R.C. Field-induced strain under load in Ni–Mn–Ga magnetic shape memory materials. J. Appl. Phys. 1998, 83, 7297–7299, doi:10.1063/1.367758.
[19]
Sakon, T.; Nagashio, H.; Sasaki, K.; Susuga, S.; Numakura, D.; Abe, M.; Endo, K.; Yamashita, S.; Nojiri, H.; Kanomata, T. Thermal strain and magnetization of the ferromagnetic shape memory alloy Ni52Mn25Ga23 in a magnetic field. J. Phys. Chem. Solids 2013, 74, 158–165, doi:10.1016/j.jpcs.2012.09.004.
[20]
Kikuchi, D.; Kanomata, T.; Yamaguchi, Y.; Nishihara, H. Magnetic properties of ferromagnetic shape memory alloys Ni50+xMn12.5Fe12.5Ga25?x. J. Alloys Compd. 2006, 426, 223–227, doi:10.1016/j.jallcom.2005.11.096.
[21]
Dai, L.; Cullen, J.; Wuttig, M. Intermartensitic transformation in a NiMnGa alloy. J. Appl. Phys. 2004, 95, 6957–6959, doi:10.1063/1.1687203.
[22]
Straka, L.; Heczko, O. Magnetic anisotropy in Ni-Mn-Ga martensite. J. Appl. Phys. 2003, 93, 8636–8638, doi:10.1063/1.1555982.
[23]
Callen, H.B.; Callen, E. The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)/2 power law. J. Phys. Chem. Solids 1966, 27, 1271–1285, doi:10.1016/0022-3697(66)90012-6.
[24]
Ziljistra, H. Experimental Methods in Magnetism 2; North-Holland Pub. Co.: Amsterdam, The Neatherland, 1967; pp. 168–181.
[25]
Graham, C.D., Jr. Magnetocrystalline anisotropy constants of iron at room temperature and below. Phys. Rev. 1958, 112, 1117–1120, doi:10.1103/PhysRev.112.1117.
[26]
Okamoto, N.; Fukuda, T.; Kakeshita, T.; Takeuchi, T. Magnetocrystalline anisotropy constant and twinning stress in martensite phase of Ni–Mn–Ga. Mat. Sci. Eng. A 2006, 438–440, 948–951.
[27]
Heczko, O.; Straka, L.; Novak, V.; F?hler, S. Magnetic anisotropy of nonmodulated Ni–Mn–Ga martensite revisited. J. Appl. Phys. 2010, 107, 09A914:1–09A914:3.
[28]
Koyama, K.; Fujii, H.; Canfield, P.C. Magnetocrystalline anisotropy of a Nd2Fe17 single crystal. Physica. B 1996, 226, 363–369, doi:10.1016/0921-4526(96)00267-0.
Boulet, P.; Daoudi, A.; Potel, M.; No?l, M.; Gross, G.M.; André, G.; Bourée, F. Crystal and magnetic structure of the uranium digermanide UGe2. J. Alloys Comp. 1997, 247, 104–108, doi:10.1016/S0925-8388(96)02600-X.
[31]
Kataoka, M.; Endo, K.; Kudo, N.; Kanomata, T.; Nishihara, H.; Shishido, T.; Umetsu, R.Y.; Nagasako, M.; Kainuma, R. Martensitic transformation, ferromagnetic transition, and their interplay in the shape memory alloys Ni2Mn1?xCuxGa. Phys. Rev. B 2010, 82, 1–14.
[32]
Oikawa, K.; Ota, T.; Ohmori, T.; Tanaka, Y.; Morito, H.; Fujita, A.; Kainuma, R.; Fukamichi, K.; Ishida, K. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys. Appl. Phys. Lett. 2002, 81, 5201–5203, doi:10.1063/1.1532105.
[33]
Sutou, Y.; Kamiya, N.; Omori, T.; Kainuma, R.; Ishida, K.; Oikawa, K. Stress-strain characteristics in Ni–Ga–Fe ferromagnetic shape memory alloys. Appl. Phys. Lett. 2004, 84, 1275–1277, doi:10.1063/1.1642277.
[34]
Oikawa, K.; Ota, T.; Sutou, Y.; Ohmori, T.; Kainuma, R.; Ishida, K. Magnetic and martensitic phase transformations in a Ni54Ga27Fe19 Alloy. Mater. Trans. 2002, 43, 2360–2362, doi:10.2320/matertrans.43.2360.
[35]
Sakon, T.; Nagashio, H.; Sasaki, K.; Susuga, S.; Endo, K.; Nojiri, H.; Kanomata, T. Thermal expansion and magnetization studies of novel ferromagnetic shape memory alloys Ni52Mn12.5Fe12.5Ga23 and Ni2Mn0.75Cu0.25Ga. Mater. Trans. 2011, 52, 1142–1147, doi:10.2320/matertrans.M2011038.
[36]
Vasil’ev, A.N.; Estrin, E.I.; Khovailo, V.V.; Bozhko, A.D.; Ischuk, R.A.; Matsumoto, M.; Takagi, T.; Tani, J. Dilatometric study of Ni2+xMn1?xGa under magnetic field. Int. Appl. Electromagn. Mechan. 2000, 12, 35–40.
[37]
Kikuchi, D. Thermomagnetic Properties of Quarternary Ni-Mn-Fe-Ga Ferromagnet Shape Memory Alloys. Master Thesis, Tohoku Gakuin University, Takajo, Japan, 2005.
[38]
Sakon, T.; Nagashio, H.; Sasaki, K.; Susuga, S.; Numakura, D.; Abe, M.; Endo, K.; Nojiri, H.; Kanomata, T. Thermal expansion and magnetization studies of the novel ferromagnetic shape memory alloy Ni2MnGa0.88Cu0.12 in a magnetic field. Physica Scripta 2011, 84, 1–6.
[39]
Albertini, F.; Fabbrici, S.; Paoluzi, A.; Kamarad, J.; Arnold, Z.; Righi, L.; Solzi, M.; Porcari, G.; Pernechele, C.; Serrate, D.; et al. Reverse magnetostructural transitions by Co and In doping NiMnGa alloys: Structural, magnetic, and magnetoelastic properties. Mater. Sci. Forum 2011, 684, 151–163, doi:10.4028/www.scientific.net/MSF.684.151.
[40]
Sakon, T.; Sasaki, K.; Numakura, D.; Abe, M.; Nojiri, H.; Adachi, Y.; Kanomata, T. Magnetic field-induced transition in Co-Doped Ni41Co9Mn31.5Ga18.5 Heusler Alloy. Mater. Trans. 2013, 54, 9–13, doi:10.2320/matertrans.M2012289.
[41]
Sakon, T.; Nojiri, H.; Adachi, Y.; Kanomata, T. Crystallography and Magnetic field-induced strain by Co doping NiCoMnGa Heusler alloy. TMS2013 Suppl. Proc. 2013, doi:10.1002/9781118663547.ch120.
Sakon, T.; Yamazaki, S.; Kodama, Y.; Motokawa, M.; Kanomata, T.; Oikawa, K.; Kainuma, R.; Ishida, K. Magnetic field-induced strain of Ni–Co–Mn–In alloy in pulsed magnetic field. Jpn. J. Appl. Phys. 2007, 46, 995–998, doi:10.1143/JJAP.46.995.
[45]
Casanova, F.; Battle, X.; Labarta, A.; Marcos, J.; Manósa, L.; Planes, A. Entropy change and magnetocaloric effect in Gd5(SixGe1?x)4. Phys. Rev. B 2002, 66, 100401:1–100401:4.
[46]
Satyanarayan, K.R.; Eliasz, W.; Miodownik, A.P. The effect of a magnetic field on the martensite transformation in steels. Acta Metall. 1968, 16, 877–887, doi:10.1016/0001-6160(68)90108-9.
[47]
Nishiyama, Z.; Fine, M.E.; Meshii, M.; Wayman, C.M. Martensite Transformation; Academic Press: Tokyo, Japan, 1971.
[48]
Kanomata, T.; Endo, K.; Kudo, N.; Umetsu, R.Y.; Nishihara, H.; Kataoka, M.; Nagasako, M.; Kainuma, R.; Ziebeck, K.R.A. Magnetic moment of Cu-modified Ni2MnGa magnetic shape memory alloys. Metals 2013, 3, 114–122, doi:10.3390/met3010114.
[49]
Khovaylo, V.V.; Buchelnikov, V.D.; Kainuma, R.; Koledov, V.V.; Ohtsuka, M.; Shavrov, V.G.; Takagi, T.; Taskaev, S.V.; Vasiliev, A.N. Phase transitions in Ni2+xMn1?xGa with a high Ni excess. Phys. Rev. B 2005, 72, 224408:1–224408:10.
Kakeshita, T.; Ullakko, K. Giant magnetostriction in ferromagnetic shape-memory alloys. MRS Bull. 2002, 27, 105–109, doi:10.1557/mrs2002.45.
[52]
Murray, S.J.; Marioni, M.; Allen, S.M.; O’Handley, R.C. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 2000, 77, 886–888, doi:10.1063/1.1306635.
[53]
Kakeshita, T.; Fukuda, T.; Sakamoto, T.; Takeuchi, T.; Kindo, K.; Endo, S.; Kishino, K. Martensitic transformation in shape memory alloys under magnetic field and hydrostatic pressure. Mater. Trans. 2002, 43, 887–892, doi:10.2320/matertrans.43.887.
[54]
Sakamoto, T.; Fukuda, T.; Kakeshita, T.; Takeuchi, T.; Kishino, K. Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 2003, 93, 8647, doi:10.1063/1.1540132.
[55]
Kakeshita, T.; Fukuda, T. Conversion of variants by magnetic field in Iron-based ferromagnetic shape memory alloys. Mater. Sci. Forum 2003, 426–432, 2309–2314, doi:10.4028/www.scientific.net/MSF.426-432.2309.
[56]
Fukuda, T.; Sakomoto, T.; Inoue, T.; Kakeshita, T.; Kishio, K. Influence of magnetic field direction on recoverable strain due to rearrangement of variants in Fe3Pt. Trans. Mater. Res. Soc. Jpn. 2004, 29, 3059–3060.
[57]
Henry, C.P.; Feuchtwanger, J.; Bono, D.; O’Handley, R.C.; Allen, A.M. Dynamic Magnetic Field-Induced Strain Response of Ni49.8Mn28.5Ga21.7 Ferromagnetic Shape Memory Alloy up to 332 Hz. In The Fourth Pacific Rim International Conference. Advanced Materials and Processing (PRICM4), Hawaii, USA, 11–15 December 2001; pp. 1657–1660.
[58]
Sakon, T.; Takaha, A.; Matsuoka, Y.; Obara, K.; Saito, T.; Motokawa, M.; Fukuda, T.; Kakeshita, T. Field-induced strain of shape memory alloy Fe-31.2%Pd using a capacitance method in a pulsed magnetic field. Jpn. J. Appl. Phys. 2004, 43, 7467–7471.
[59]
Sakon, T.; Takaha, A.; Obara, K.; Dejima, K.; Nojiri, H.; Motokawa, M.; Fukuda, T.; Kakeshita, T. Magnetic-field-induced strain of shape-memory alloy Fe3Pt studied by a capacitance method in a pulsed magnetic field. Jpn. J. Appl. Phys. 2007, 46, 146–151.
[60]
Sutou, Y.; Imano, Y.; Koeda, N.; Omori, T.; Kainuma, R.; Ishida, K.; Oikawa, K. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 2004, 85, 4358–4360, doi:10.1063/1.1808879.
[61]
Oikawa, K.; Ito, W.; Imano, Y.; Sutou, Y.; Kainuma, R.; Ishida, K.; Okamoto, S.; Kitakami, O.; Kanomata, T. Effect of magnetic field on martensite transformation of Ni46Mn41In13 Heusler alloy. Appl. Phys. Lett. 2006, 88, 122507:1–122507:3.
[62]
Barandiarán, J.M.; Chernenko, V.A.; Gutiérrez, J.; Orúe, I.; Lázpita, P. Magnetostriction in the vicinity of structural transitions in Ni2MnGa. Appl. Phys. Lett. 2012, 100, 262410:1–262410:5.
[63]
Xu, X.; Ito, W.; Katakura, I.; Tokunaga, M.; Kainuma, R. In situ optical microscopic observation of NiCoMnIn metamagnetic shape memory alloy under pulsed high magnetic field. Scr. Mater. 2011, 65, 946–949.
[64]
Barandiarán, J.M.; Chernenko, V.A.; Cesari, E.; Salas, D.; Lazpita, P.; Gutierrez, J.; Orue, I. Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy. Appl. Phys. Lett. 2013, 102, 071904:1–071904:4.
[65]
Entel, P.; Siewert, M.; Gruner, M.E.; Herper, H.C.; Comtesse, D.; Arroyave, R.; Singh, N.; Talapatra, A.; Sokolovskiy, V.V.; Buchelnikov, V.D.; et al. Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles. Eur. Phys. J. B 2013, 86, 65:1–65:11.
[66]
Lázpita, P.; Barandiarán, J.M.; Gutiérrez, J.; Feuchtwanger, J.; Chernenko, V.A.; Richard, M.L. Magnetic moment and chemical order in off-stoichiometric Ni-Mn-Ga ferromagnetic shape memory alloys. N. J. Phys. 2011, 13, 033039:1–033039:14.
[67]
Lázpita, P.; Chernenko, V.A.; Barandiarán, J.M.; Orue, I.; Gutiérrez, J.; Feuchtwanger, J.; Rodriguez-Velamazán, J.A. Influence of magnetic field on magnetostructural transition in Ni46.4Mn32.8Sn20.8 Heusler alloy. Mater. Sci. Forum 2010, 635, 89–95.
[68]
Barandiarán, J.M.; Chernenko, V.A.; Lázpita, P.; Gutiérrez, J.; Feuchtwanger, J. Effect of martensitic transformation and magnetic field on transport properties of Ni-Mn-Ga and Ni-Fe-Ga Heusler alloys. Phys. Rev. B 2009, 80, 104404:1–104404:7.
[69]
Chernenko, V.A.; Lv’ov, V.A.; Kanomata, T.; Kakeshita, T.; Koyama, K.; Besseghini, S. Martensitic transformation in Ni-Mn-Ga alloy under high magnetic fields. Mater. Trans. 2006, 47, 635–638, doi:10.2320/matertrans.47.635.
[70]
Oikawa, K.; Imano, Y.; Chernenko, V.A.; Luo, F.; Omori, T.; Sutou, Y.; Kainuma, R.; Kanomata, T.; Ishida, K. Influence of Co addition on martensitic and magnetic transitions in Ni-Fe-Ga β based shape memory alloys. Mater. Trans. 2005, 46, 734–737, doi:10.2320/matertrans.46.734.
[71]
Chernenko, V.A.; L’vov, V.A.; Golub, V.; Aseguinolaza, I.R.; Barandiarán, J.M. Magnetic anisotropy of mesoscale-twinned Ni-Mn-Ga thin films. Phys. Rev. B 2011, 84, 054450:1–054450:7.
[72]
L’vov, V.; Chernenko, V. Magnetic anisotropy of ferromagnetic martensites. Mater. Sci. Forum 2011, 684, 31–47, doi:10.4028/www.scientific.net/MSF.684.31.
[73]
Chernenko, V.A.; L’vov, V.A. Magnetoelastic nature of ferromagnetic shape memory effect. Mater. Sci. Forum 2008, 583, 1–20, doi:10.4028/www.scientific.net/MSF.583.1.
[74]
L’vov, V.; Zagorodnyuk, S.; Chernenko, V.; Takagi, T. Magnetic-field-induced stresses and magnetostrain effect in martensite. Mater. Trans. 2002, 43, 876–880, doi:10.2320/matertrans.43.876.