It is generally accepted that the martensitic transformations (MTs) in the shape memory alloys (SMAs) are mainly characterized by the shear deformation of the crystal lattice that arises in the course of MT, while a comparatively small volume change during MT is considered as the secondary effect, which can be disregarded when the basic characteristics of MTs and functional properties of SMAs are analyzed. This point of view is a subject to change nowadays due to the new experimental and theoretical findings. The present article elucidates (i) the newly observed physical phenomena in different SMAs in their relation to the volume effect of MT; (ii) the theoretical analysis of the aforementioned volume-related phenomena.
References
[1]
Christian, J.W. Theory of Phase Transformations in Metals and Alloys; Pergamon Press: New York, NY, USA, 1975; pp. 1–973.
[2]
Khachaturyan, A.G. Theory of Structural Transformations in Solids; Wiley: New York, NY, USA, 1983; pp. 1–574.
[3]
Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998; pp. 1–267.
[4]
Lagoudas, C. Shape Memory Alloys: Modeling and Engineering Applications; Springer-Verlag: New York, NY, USA, 2007; pp. 1–435.
[5]
Kohl, M. Shape Memory Microactuators; Springer-Verlag: Berlin, Germany, 2004; pp. 1–245.
O’Handley, R.C.; Allen, S.M. Shape-Memory Alloys, Magnetically Activated Ferromagnetic Shape-Memory Materials. In Encyclopedia of Smart Materials; Schwartz, M., Ed.; Wiley: New York, NY, USA, 2002; pp. 936–951.
[9]
S?derberg, O.; Ge, Y.; Sozinov, A.; Hannula, S.-P.; Lindroos, V.K. Giant Magnetostrictive Materials. In Handbook of Magnetic Materials; Buschow, J., Ed.; Elsevier Science: Amsterdam, the Netherlands, 2006; pp. 1–39.
[10]
Chernenko, V.A. Advances in Shape Memory Materials; TTP: Zurich, Switzerland, 2008; pp. 1–302.
[11]
Chernenko, V.A. Advances in Shape Memory Materials; TTP: Zurich, Switzerland, 2011; pp. 1–231.
[12]
Entel, P.; Buchelnikov, V.D.; Khovailo, V.V.; Zayak, A.T.; Adeagbo, W.A.; Gruner, M.E.; Herper, H.C.; Wassermann, E.F. Modelling the phase diagram of magnetic shape memory Heusler alloys. J. Phys. D Appl. Phys. 2006, 39, 865–889, doi:10.1088/0022-3727/39/5/S13.
[13]
Acet, M.; Manosa, L.; Planes, A. Magnetic-Field-Induced Effects in Martensitic Heusler-Based Magnetic Shape Memory Alloys. In Handbook of Magnetic Materials; Buschow, J., Ed.; Elsevier Science: Amsterdam, the Netherlands, 2011; pp. 232–282.
[14]
Entel, P.; Siewert, M.; Gruner, M.E.; Herper, H.C.; Comtesse, D.; Arroyave, R.; Singh, N.; Talapatra, A.; Sokolovskiy, V.V.; Buchelnikov, V.D.; Albertini, F.; et al. Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles. Eur. Phys. J. B 2013, 86, 65–75, doi:10.1140/epjb/e2012-30936-9.
[15]
Murray, S.J.; Marioni, M.; Allen, S.M.; O’Handley, R.C.; Lograsso, T.A. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 2000, 77, 886–888, doi:10.1063/1.1306635.
[16]
Heczko, O.; Sozinov, A.; Ullakko, K. Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans. Magn. 2000, 36, 3266–3268, doi:10.1109/20.908764.
[17]
Sozinov, A.; Lanska, N.; Soroka, A.; Zou, W. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 2013, 102, 021902:1–021902:5.
[18]
Warlimont, H.; Delaey, L. Martersitic. Transformations in Copper-,Silver- and Gold-Based Alloys; Pergamon Press: New York, NY, USA, 1974; pp. 1–379.
[19]
Kokorin, V.V.; Samsonov, Yu.I.; Khshanovskiy, L.F.; Chernenko, V.A.; Shevchenko, O.M. Volume change during γ–α transformation in iron-nickel base alloys. Phys. Met. Metall. 1991, 71, 141–146.
[20]
Maki, T.; Kobayashi, K.; Minato, M.; Tamura, I. Thermoelastic martensite in an ausaged Fe-Ni-Ti-Co alloy. Scripta. Met. 1984, 18, 1105–1109, doi:10.1016/0036-9748(84)90187-X.
[21]
Maki, T.; Furutani, S.; Tamura, I. Shape memory effect related to thin plate martensite with large thermal hysteresis in ausaged Fe-Ni-Co-Ti alloy. ISIJ Int. 1989, 29, 438–445, doi:10.2355/isijinternational.29.438.
[22]
Kokorin, V.V.; Chernenko, V.A. Reversion stress evaluation in Fe-Ni-Co-Ti alloys. In Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, CA, USA, 1997; pp. 119–124.
[23]
Jost, N.; Escher, K.; Donner, P.; Sade, M.; Halter, K.; Hornbogen, E. Steels with shape memory. WIRE 1990, 40, 639–640.
[24]
Gefen, Y.; Halwany, A.; Rosen, M. Effect of hydrostatic pressure on the cubic-orthorhombic phase transformation in Au-47.5 at% Cd alloy. Phil. Mag. 1973, 28, 1–9, doi:10.1080/14786437308217429.
Khovailo, V.V.; Takagi, T.; Tani, J.; Levitin, R.Z.; Cherechukin, A.A.; Matsumoto, M.; Note, R. Magnetic properties of Ni2.18Mn0.82Ga Heusler alloys with a coupled magnetostructural transition. Phys. Rev. B 2002, 65, 092410:1–092410:4.
[31]
Ito, W.; Imano, Y.; Kainuma, R.; Sutou, Y.; Oikawa, K.; Ishida, K. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall. Mater. Trans. A 2007, 38, 759–766, doi:10.1007/s11661-007-9094-9.
[32]
Kustov, S.; Corró, M.L.; Pons, J.; Cesari, E. Entropy change and effect of magnetic field on martensitic transformation in a metamagnetic Ni–Co–Mn–In shape memory alloy. Appl. Phys. Lett. 2009, 94, 191901:1–191901:3.
Liakos, J.K.; Saunders, G.A. Application of the Landau theory to elastic phase transitions. Philos. Mag. A 1982, 46, 217–242, doi:10.1080/01418618208239916.
[39]
Gomonaj, E.V.; L'vov, V.A. Martensitic phase transition with two-component order parameter in a stressed cubic crystal. Phase Trans. 1994, 47, 9–21, doi:10.1080/01411599408200334.
[40]
Barsch, G.R.; Krumhansl, J.A. Twin boundaries in ferroelastic media without interface dislocations. Phys. Rev. Lett. 1984, 53, 1069–1072.
[41]
Danilevich, A.G.; L’vov, V.A. Strong influence of ferromagnetic ordering and internal pressure on the elastic modulus of shape memory alloy. JMMM 2013, 333, 108–113, doi:10.1016/j.jmmm.2012.12.021.
[42]
Patel, J.R.; Cohen, M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953, 1, 531–538, doi:10.1016/0001-6160(53)90083-2.
[43]
Rohde, R.W.; Graham, R.A. The effect of hydrostatic pressure on the martensitic reversal of an iron-nickel-carbon alloy. Trans. Met. Soc. AIME 1969, 245, 2441–2445.
[44]
Otsuka, K.; Ren, X. Mechanism of martensite aging effects and new aspects. Mater. Sci. Eng. A 2001, 312, 207–218, doi:10.1016/S0921-5093(00)01877-3.
[45]
Pelegrina, J.L.; Ahlers, M. Influence of a constant stress during isothermal β phase ageing on the martensitic transformation in a Cu–Zn–Al shape memory alloy. Scr. Mater. 2004, 50, 423–427, doi:10.1016/j.scriptamat.2003.11.006.
Picornell, C.; Pons, J.; Cesari, E. Effect of aging under compressive stress along [100] in Co–Ni–Ga single crystals. Funct. Mater. Lett. 2009, 2, 83–86.
[48]
Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678, doi:10.1016/j.pmatsci.2004.10.001.
[49]
L’vov, V.A.; Glavatska, N.; Aaltio, I.; S?derberg, O.; Glavatskyy, I.; Hannula, S.-P. The role of anisotropic thermal expansion of shape memory alloys in their functional properties. Acta Mater. 2009, 57, 5605–5612, doi:10.1016/j.actamat.2009.07.058.
[50]
Brill, T.M.; Mittelbach, S.; Assmus, W.; Mullner, M.; Luthi, B. Elastic properties of NiTi. J. Phys. Condens. Matter. 1991, 3, 9621–9627, doi:10.1088/0953-8984/3/48/004.
[51]
Chernenko, V.A.; Homenko, D.V.; L’vov, V.A.; Barandiaran, J.M. Specific heat of shape memory alloys with soft elastic moduli. J. Appl. Phys. 2011, 109, 013526:1–013526:6.
[52]
Lapshin, V.P.; Grishkov, V.N.; Lotkov, A.I. On certain anharmonic characteristics of B2-Phase Ti(Ni, Fe) alloys under hydrostatic pressure. Russ. Phys. J. 2000, 43, 999–1002.
[53]
Ren, X.; Otsuka, K. Origin of rubber-like behaviour in metal alloys. Nature 1997, 389, 579–582, doi:10.1038/39277.
[54]
Ishibashi, H.; Kogachi, M.; Ohba, T.; Ren, X.; Otsuka, K. Vacancy migration and long-range ordering due to ageing in AuCd shape memory alloys. Mater. Sci. Eng. A 2002, 329–331, 568–572, doi:10.1016/S0921-5093(01)01566-0.
[55]
Tadaki, K.; Otsuka, K.; Shimizu, K. Shape memory alloys. Ann. Rev. Mater. Sci. 1988, 18, 25–45, doi:10.1146/annurev.ms.18.080188.000325.
Murakami, Y.; Nakajima, Y.; Otsuka, K.; Ohba, T.; Matsuo, R.; Ohshima, K. Characteristics and mechanism of martensite ageing effect in Au-Cd alloys. Mater. Sci. Eng. A 1997, 237, 87–101, doi:10.1016/S0921-5093(97)00120-2.
[58]
Ohta, T. Theory of rubber-like elasticity in shape memory alloys. Mater. Sci. Eng. A 2001, 312, 57–65, doi:10.1016/S0921-5093(00)01898-0.
[59]
Ren, X.; Otsuka, K. Universal symmetry property of point defects in crystals. Phys. Rev. Lett. 2000, 85, 1016–1019, doi:10.1103/PhysRevLett.85.1016.
[60]
Xue, D.; Zhou, Y.; Ding, X.; Otsuka, K.; Sun, J.; Ren, X. Martensite aging effects on the dynamic properties of Au–Cd shape memory alloys: Characteristics and modelling. Acta Mater. 2011, 59, 4999–5011.
[61]
Xue, D.; Zhou, Y.; Ding, X.; Lookman, T.; Sun, J.; Ren, X. Aging and deaging effects in shape memory alloys. Phys. Rev. B 2012, 86, 184109:1–184109:11.
[62]
Kosogor, A.; Xue, D.; Zhou, Y.; Ding, X.; Otsuka, K.; L’vov, V.A.; Sun, J.; Ren, X. Impact of the volume change on the aging effects in Cu-Al-Ni martensite: experiment and theory. J. Phys. Condens. Matter 2013. submitted for publication.
[63]
Otsuka, K.; Ren, X.; Murakami, Y.; Kawano, T.; Ishii, T.; Ohba, T. Composition dependence of the rubber-like behavior in ζ2′-martensite of AuCd alloys. Mater. Sci. Eng. A 1999, 273, 558–563.
[64]
Ren, X.; Otsuka, K. The role of softening in elastic constant c44 in martensitic transformation. Scr. Mater. 1998, 38, 1669–1675.
[65]
Otsuka, K.; Ren, X. Martensitic transformations in nonferrous shape memory alloys. Mater. Sci. Eng. A 1999, 273–275, 89–105, doi:10.1016/S0921-5093(99)00291-9.
[66]
Otsuka, K.; Shimizu, K. Morphology and crystallography of thermoelastic Cu-Al-Ni martensite analyzed by the phenomenological theory. Mat. Trans. JIM 1974, 15, 103–108.
[67]
Van Humbeeck, J.; Janssen, J.; Mwamba, N.; Delaey, L. The stabilisation of step-quenched copper-zinc-aluminum martensite part I: The reverse transformation temperatures. Scr. Metall. 1984, 18, 893–898, doi:10.1016/0036-9748(84)90256-4.
[68]
Nakata, Y.; Yamamoto, O.; Shimizu, K. Effect of aging in Cu-Zn-Al shape memory alloys. Mat. Trans. JIM 1993, 34, 429–437.
[69]
Kokorin, V.V.; Kozlova, L.E.; Titenko, A.N. Temperature hysteresis of martensite transformation in aging Cu–Mn–Al alloy. Scr. Mater. 2002, 47, 499–502, doi:10.1016/S1359-6462(02)00136-7.
[70]
Kustov, S.; Pons, J.; Cesari, E.; Van Humbeeck, J. Pinning-induced stabilization of martensite: Part I. Stabilization due to static pinning of interfaces. Acta Mater. 2004, 52, 3075–3081, doi:10.1016/j.actamat.2004.03.009.
[71]
Chernenko, V.A.; Pons, J.; Cesari, E.; Zasimchuk, I.K. Transformation behaviour and martensite stabilization in the ferromagnetic Co–Ni–Ga Heusler alloy. Scr. Mater. 2004, 50, 225–229, doi:10.1016/j.scriptamat.2003.09.024.
Hsieh, S.F.; Chang, W.K. Martensitic transformation of an aged/thermal-cycled Ti30.5Ni49.5Zr10Hf10 Shape Memory Alloy. J. Mater. Sci. 2007, 37, 2851–2856, doi:10.1023/A:1016082004360.
[74]
Wayman, C.M.; Cornelis, I.; Shimizu, K. Transformation behavior and the shape memory effect in thermally cycled TiNi. Scr. Metall. 1972, 6, 115–122, doi:10.1016/0036-9748(72)90261-X.
[75]
Miyazaki, S.; Igo, Y.; Otsuka, K. Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys. Acta Metall. 1986, 34, 2045–2051, doi:10.1016/0001-6160(86)90263-4.
[76]
Hsieh, S.F.; Wu, S.K.; Lin, H.C. Martensitic transformation of a Ti-rich Ti51Ni47Si2 shape memory alloy. J. Alloys Compd. 2002, 335, 254–261, doi:10.1016/S0925-8388(01)01821-7.
[77]
Perkins, J.; Muesing, W.E. Martensitic transformation cycling effects in Cu-Zn-Al shape memory alloys. Met. Trans. A 1983, 14, 33–36, doi:10.1007/BF02643734.
[78]
Chernenko, V.A.; Kokorin, V.V.; Babii, O.M.; Zasimchuk, I.K. Phase diagrams in the Ni-Mn-Ga system under compression. Intermetallics 1998, 6, 29–34, doi:10.1016/S0966-9795(97)00050-2.
[79]
Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics. Volume 5 Statistical Physics; Pergamon Press: New York, NY, USA, 1980.
[80]
L’vov, V.A.; Matsishin, N.; Glavatska, N. Thermoelastic behaviour of martensitic alloy in the vicinity of critical point in the stress–temperature phase diagram. Phase Trans. 2010, 83, 293–301.
[81]
Kosogor, A.; Matsishin, N.J.; L'vov, V.A. Modelling of hysteresis loops taken during the stress- and temperature-induced martensitic transformations. Phase Trans. 2013. in press.
[82]
L’vov, V.A.; Gomonaj, E.V.; Chernenko, V.A. A phenomenological model of ferromagnetic martensite. J. Phys. Condens. Mat. 1998, 10, 4587–4596, doi:10.1088/0953-8984/10/21/015.
[83]
Chernenko, V.A.; L'vov, V.A.; Pasquale, M.; Besseghini, S.; Sasso, C.; Polenur, D.A. Magnetoelastic behavior of Ni-Mn-Ga martensitic alloys. Int. J. Appl. Electromagn. Mech. 2000, 12, 3–8.
[84]
Chernenko, V.A.; L’vov, V.A.; Zagorodnyuk, S.P.; Takagi, T. Ferromagnetism of thermoelastic martensites: Theory and experiment. Phys. Rev. B 2003, 67, 064407:1–064407:6.
[85]
Buchelnikov, V.D.; Khovailo, V.V.; Takagi, T. The thermal expansion coefficient and volume magnetostriction of Heusler Ni2MnGa alloys. JMMM 2006, 300, e459–e461, doi:10.1016/j.jmmm.2005.10.192.
[86]
Chernenko, V.A.; Amengual, A.; Cesari, E.; Kokorin, V.V.; Zasimchuk, I.K. Thermal and magnetic properties of stress-induced martensites in Ni2MnGa alloys. J. Phys. IV 1995, 5, 95–98.
[87]
Fukuda, T.; Maeda, H.; Yasui, M.; Kakeshita, T. Influence of magnetocrystalline anisotropy on martensitic transformation under magnetic field of single-crystalline Ni2MnGa. Scr. Mater. 2009, 60, 261–263, doi:10.1016/j.scriptamat.2008.10.016.
[88]
Seguí, C.; Chernenko, V.A.; Pons, J.; Cesari, E. Low-Temperature-Induced intermartensitic phase transformations in Ni–Mn–Ga single crystal. JMMM 2005, 290, 811–815.
[89]
Seguí, C.; Chernenko, V.A.; Pons, J.; Cesari, E. Two-Step martensitic transformation in Ni-Mn-Ga alloys. J. Phys. IV 2003, 112, 903–906.
[90]
Chernenko, V.A.; Cesari, E.; Pons, J.; Seguí, C. Phase transformations in rapidly quenched Ni–Mn–Ga alloys. Mat. J. Res. 2000, 15, 1496–1504, doi:10.1557/JMR.2000.0215.
[91]
Chernenko, V.A.; Cesari, E.; Kokorin, V.V.; Vitenko, I.N. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr. Met. Mat. 1995, 33, 1239–1244, doi:10.1016/0956-716X(95)00370-B.
[92]
Cesari, E.; Salas, D.; Kustov, S. Entropy changes in ferromagnetic shape memory alloys. Mat. Sci. Forum 2011, 684, 49–60, doi:10.4028/www.scientific.net/MSF.684.49.
[93]
Recarte, V.; Pérez-Landazábal, J.I.; Gómez-Polo, C.; Sánchez-Alarcos, V.; Cesari, E.; Pons, J. Vibrational and magnetic contributions to the entropy change associated with the martensitic transformation of Ni–Fe–Ga ferromagnetic shape memory alloys. J. Phys. Condens. Matter 2010, 22, 416001:1–416001:7.
[94]
Liu, Z.H.; Hu, H.N.; Liu, G.D.; Cui, Y.T.; Zhang, M.; Chen, J.L.; Wu, G.H. Electronic structure and ferromagnetism in the martensitic-transformation material Ni2FeGa. Phys. Rev. B 2004, 69, 134415.
[95]
Seguí, C.; Cesari, E. Composition and atomic order effects on the structural and magnetic transformations in ferromagnetic Ni–Co–Mn–Ga shape memory alloys. J. Appl. Phys. 2012, 111, 043914:1–043914:7.
[96]
Barandiaran, J.M.; Chernenko, V.A.; Cesari, E.; Salas, D.; Lazpita, P.; Gutierrez, J.; Orue, I. Magnetic influence on the martensitic transformation entropy in Ni-Mn-In metamagnetic alloy. Appl. Phys. Lett. 2013, 102, 071904:1–071904:4.
[97]
Gruner, M.E.; Entel, P. Impact of local lattice distortions on the structural stability of Fe-Pd magnetic shape-memory alloys. Phys. Rev. B 2011, 83, 214415:1–214415:11.