This paper details the MOLGEN entries for the 2012 CASMI contest for small molecule identification to demonstrate structure elucidation using structure generation approaches. Different MOLGEN programs were used for different categories, including MOLGEN–MS/MS for Category 1, MOLGEN 3.5 and 5.0 for Category 2 and MOLGEN–MS for Categories 3 and 4. A greater focus is given to Categories 1 and 2, as most CASMI participants entered these categories. The settings used and the reasons behind them are described in detail, while various evaluations are used to put these results into perspective. As one author was also an organiser of CASMI, these submissions were not part of the official CASMI competition, but this paper provides an insight into how unknown identification could be performed using structure generation approaches. The approaches are semi-automated (category dependent) and benefit greatly from user experience. Thus, the results presented and discussed here may be better than those an inexperienced user could obtain with MOLGEN programs.
References
[1]
Meringer, M.; Reinker, S.; Zhang, J.; Muller, A. MS/MS data improves automated determination of molecular formulas by mass spectrometry. MATCH Commun. Math. Comput. Chem. 2011, 65, 259–290.
[2]
Gugisch, R.; Kerber, A.; Kohnert, A.; Laue, R.; Meringer, M.; Rücker, C.; Wassermann, A. MOLGEN 3.5 Reference Guide. 2009. Available online: http://molgen.de/documents/molgen35.pdf (accessed on 28 February 2013).
[3]
Benecke, C.; Grüner, T.; Kerber, A.; Laue, R.; Wieland, T. MOLecular structure GENeration with MOLGEN, new features and future developments. Fresenius J. Anal. Chem. 1997, 359, 23–32, doi:10.1007/s002160050530.
[4]
Gugisch, R.; Kerber, A.; Kohnert, A.; Laue, R.; Meringer, M.; Rücker, C.; Wassermann, A. MOLGEN 5.0 Reference Guide. 2009. Available online: http://molgen.de/documents/manual50.pdf (accessed on 28 February 2013).
[5]
Gugisch, R.; Kerber, A.; Kohnert, A.; Laue, R.; Meringer, M.; Rücker, C.; Wassermann, A. MOLGEN 5.0, a Molecular Structure Generator in Advances in Mathematical Chemistry. In Advances in Mathematical Chemistry; Basak, S.C., Restrepo, G., Villaveces, J.L., Eds.; Bentham Science Publishers: Sharjah, UAE, 2013. in press.
[6]
Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010, 11, 148, doi:10.1186/1471-2105-11-148.
[7]
Heinonen, M.; Rantanen, A.; Mielik?inen, T.; Kokkonen, J.; Kiuru, J.; Ketola, R.A.; Rousu, J. FiD: A software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun. Mass Spectrom. 2008, 22, 3043–3052, doi:10.1002/rcm.3701.
[8]
HighChem. Mass Frontier Version 6.0; HighChem/Thermo Scientific: Bratislava, Slovakia, 2013.
[9]
Kerber, A.; Laue, R.; Meringer, M.; Rücker, C. MOLGEN–QSPR, a software package for the search of quantitative structure property relationships. MATCH Commun. Math. Comput. Chem. 2004, 51, 187–204.
[10]
Kerber, A.; Laue, R.; Meringer, M.; Varmuza, K. MOLGEN–MS: Evaluation of Low Resolution Electron Impact Mass Spectra with MS Classification and Exhaustive Structure Generation. In Advances in Mass Spectrometry; Gelpi, E., Ed.; Wiley: West Sussex, UK, 2001; Volume 15, pp. 939–940.
[11]
Meringer, M. Mathematical Models for Conbinatorial Chemistry and Molecular Structure Elucidation. (in German); Logos–Verlag Berlin: Berlin, Germany, 2004; p. 390.
[12]
Schymanski, E.L. Integrated Analytical and Computer Tools for Toxicant Identification in Effect–Directed Analysis. PhD thesis, Faculty for Chemistry and Physics, Technical University Bergakadamie Freiberg and Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany, 2011.
[13]
Lindsay, R.K.; Buchanan, B.G.; Feigenbaum, E.A.; Lederberg, J. Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project; McGraw–Hill: New York, NY, USA, 1980.
[14]
Varmuza, K.; Werther, W. Mass spectral classifiers for supporting systematic structure elucidation. J. Chem. Inf. Comput. Sci. 1996, 36, 323–333, doi:10.1021/ci9501406.
[15]
Kerber, A.; Laue, R.; Grüner, T.; Meringer, M. MOLGEN 4.0. MATCH Commun. Math. Comput. Chem. 1998, 37, 205–208.
[16]
Kerber, A.; Meringer, M.; Rücker, C. CASE via MS: Ranking structure candidates by mass spectra. Croatica Chem. Acta 2006, 79, 449–464.
[17]
Grüner, T.; Kerber, A.; Laue, R.; Liepelt, M.; Meringer, M.; Varmuza, K.; Werther, W. Bestimmung von Summenformeln aus Massenspektren durch Erkennung überlagerter Isotopenmuster. MATCH Commun. Math. Comput. Chem. 1998, 37, 163–177.
[18]
Kerber, A.; Laue, R.; Meringer, M.; Rücker, C.; Schymanski, E.L. Mathematical Chemistry and Chemoinformatics: Structure Generation, Elucidation and Quantitative Structure-Property Relationships; Walter de Gruyter: Berlin, Germany. to appear in 2013.
[19]
Schymanski, E.L.; Meinert, C.; Meringer, M.; Brack, W. The use of MS classifiers and structure generation to assist in the identification of unknowns in effect–directed analysis. Anal. Chim. Acta. 2008, 615, 136–147, doi:10.1016/j.aca.2008.03.060.
[20]
NIST/EPA/NIH. NIST 2011 Mass Spectral Library; National Institute of Standards and Technology, US Secretary of Commerce: Gaithersburg, Maryland, USA, 2011.
[21]
Schymanski, E.L.; Meringer, M.; Brack, W. Automated strategies to identify compounds on the basis of GC/EI–MS and calculated properties. Anal. Chem. 2011, 83, 903–912, doi:10.1021/ac102574h.
[22]
Schymanski, E.L.; Gallampois, C.M.J.; Krauss, M.; Meringer, M.; Neumann, S.; Schulze, T.; Wolf, S.; Brack, W. Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties. Anal. Chem. 2012, 84, 3287–3295, doi:10.1021/ac203471y.
[23]
Schymanski, E.L.; Neumann, S. CASMI: Challenges and solutions. Metabolites Year. in press.
[24]
Schymanski, E.L.; Neumann, S. CASMI: And the winner is .. Metabolites Year. in press.
[25]
Meringer, M. MOLGEN–MS/MS Software User Manual. München, Germany, 2011. 2011. Available online: http://molgen.de/documents/MolgenMsMs.pdf (accessed on 28 February 2013).
[26]
Stravs, M.A.; Schymanski, E.L.; Singer, H.P.; Hollender, J. Automatic recalibration and processing of tandem mass spectra using formula annotation. J. Mass Spectrom. 2013, 48, 89–99, doi:10.1002/jms.3131.
[27]
Dalby, A.; Nourse, J.G.; Hounshell, W.D.; Gushurst, A.K.I.; Grier, D.L.; Leland, B.A.; Laufer, J. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 1992, 32, 244–255, doi:10.1021/ci00007a012.
[28]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 1–14, doi:10.1186/1758-2946-3-1.
[29]
Grüner, T.; Kerber, A.; Laue, R.; Meringer, M.; Varmuza, K.; Werther, W. MOLGEN–MS version 1.0.1.2. University of Bayreuth, Germany, 2009. 2009. Available online: http://www.molgen.de (accessed on 28 February 2013). Trial version available online.
[30]
Schymanski, E.L.; Neumann, S. Critical Assessment of Small Molecule Identification Contest. 2012. Available online: http://www.casmi-contest.org/challenges-cat3-4.shtml/ (accessed on 24 May 2013).
[31]
Schymanski, E.L.; Neumann, S. Critical Assessment of Small Molecule Identification Contest Rules. 2012. Available online: http://casmi-contest.org/rules.shtml (accessed on 20 May 2013).
[32]
Schymanski, E.L.; Meringer, M.; Brack, W. Matching structures to mass spectra using fragmentation patterns: Are the results as good as they look? Anal. Chem. 2009, 81, 3608–3617, doi:10.1021/ac802715e.
[33]
Oberacher, H. Applying tandem mass spectral libraries for solving the CASMI LC/MS challenge 2012. Metabolites 2013, 3, 312–324, doi:10.3390/metabo3020312.
[34]
Ruttkies, C.; Gerlich, M.; Neumann, S. Tackling challenging challenges with MetFrag and MetFusion. Metabolites Year. in press.
[35]
Rasche, F.; Svatos, A.; Maddula, R.K.; B?ttcher, C.; B?cker, S. Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 2011, 83, 1243–1251, doi:10.1021/ac101825k.
[36]
Sheldon, M.T.; Mistrik, R.; Croley, T.R. Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J. Am. Soc. Mass Spectrom. 2009, 20, 370–376, doi:10.1016/j.jasms.2008.10.017.
[37]
Hildebrandt, C.; Wolf, S.; Neumann, S. Database supported candidate search for metabolite identification. J. Integr. Bioinform. 2011, doi:10.2390/biecoll-jib-2011-157.
[38]
Peironcely, J.E.; Rojas-Chertó, M.; Tas, A.; Vreeken, R.J.; Reijmers, T.; Coulier, L.; Hankemeier, T. An automated pipeline for de novo metabolite identification using mass spectrometry-based metabolomics. Anal. Chem. 2013, 85, 3576–3583, doi:10.1021/ac303218u.
[39]
Peironcely, J.E.; Rojas-Chertó, M.; Fichera, D.; Reijmers, T.; Coulier, L.; Faulon, J.L.; Hankemeier, T. OMG: Open molecule generator. J. Cheminform. 2012, doi:10.1186/1758-2946-4-21.
[40]
Dixon, R.A.; Strack, D. Phytochemistry meets genome analysis, and beyond. Phytochemistry 2003, 62, 815–816, doi:10.1016/S0031-9422(02)00712-4.