全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metabolites  2013 

Electrospray Quadrupole Travelling Wave Ion Mobility Time-of-Flight Mass Spectrometry for the Detection of Plasma Metabolome Changes Caused by Xanthohumol in Obese Zucker (fa/fa) Rats

DOI: 10.3390/metabo3030701

Keywords: obesity, xanthohumol, travelling wave ion mobility, mass spectrometry, lipidomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study reports on the use of traveling wave ion mobility quadrupole time-of-flight (ToF) mass spectrometry for plasma metabolomics. Plasma metabolite profiles of obese Zucker fa/fa rats were obtained after the administration of different oral doses of Xanthohumol; a hop-derived dietary supplement. Liquid chromatography coupled data independent tandem mass spectrometry (LC-MS E) and LC-ion mobility spectrometry (IMS)-MS E acquisitions were conducted in both positive and negative modes using a Synapt G2 High Definition Mass Spectrometry (HDMS) instrument. This method provides identification of metabolite classes in rat plasma using parallel alternating low energy and high energy collision spectral acquisition modes. Data sets were analyzed using pattern recognition methods. Statistically significant ( p < 0.05 and fold change (FC) threshold > 1.5) features were selected to identify the up-/down-regulated metabolite classes. Ion mobility data visualized using drift scope software provided a graphical read-out of differences in metabolite classes.

References

[1]  Escobar-Morreale, H.F.; Samino, S.; Insenser, M.; Vinaixa, M.; Luque-Ramirez, M.; Lasuncion, M.A.; Correig, X. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: Plasma metabolomic approach using GC-MS. Clin. Chem. 2012, 58, 999–1009, doi:10.1373/clinchem.2011.176396.
[2]  Lin, S.; Liu, N.; Yang, Z.; Song, W.; Wang, P.; Chen, H.; Lucio, M.; Schmitt-Kopplin, P.; Chen, G.; Cai, Z. GC/MS-based metabolomics reveals fatty acid biosynthesis and cholesterol metabolism in cell lines infected with influenza A virus. Talanta 2010, 83, 262–268, doi:10.1016/j.talanta.2010.09.019.
[3]  Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trac-Trend Anal. Chem. 2012, 32, 1–14, doi:10.1016/j.trac.2011.08.009.
[4]  Lu, W.; Bennett, B.D.; Rabinowitz, J.D. Analytical strategies for LC-MS-based targeted metabolomics. J. Chromatogr. B 2008, 871, 236–242, doi:10.1016/j.jchromb.2008.04.031.
[5]  Ramautar, R.; Somsen, G.W.; de Jong, G.J. CE-MS for metabolomics: Developments and applications in the period 2010–2012. Electrophoresis 2013, 34, 86–98, doi:10.1002/elps.201200390.
[6]  Celebier, M.; Ibanez, C.; Simo, C.; Cifuentes, A. A Foodomics approach: CE-MS for comparative metabolomics of colon cancer cells treated with dietary polyphenols. Methods Mol. Biol. 2012, 869, 185–195, doi:10.1007/978-1-61779-821-4_15.
[7]  Ramautar, R.; Somsen, G.W.; de Jong, G.J. CE-MS in metabolomics. Electrophoresis 2009, 30, 276–291, doi:10.1002/elps.200800512.
[8]  Weckwerth, W.; Morgenthal, K. Metabolomics: From pattern recognition to biological interpretation. Drug Discovery Today 2005, 10, 1551–1558, doi:10.1016/S1359-6446(05)03609-3.
[9]  Mashego, M.R.; Rumbold, K.; De Mey, M.; Vandamme, E.; Soetaert, W.; Heijnen, J.J. Microbial metabolomics: Past, present and future methodologies. Biotechnol. Lett. 2007, 29, 1–16.
[10]  Jagerdeo, E.; Montgornery, M.A.; Sibum, M.; Sasaki, T.A.; LeBeau, M.A. Rapid Analysis of Cocaineand Metabolites in Urine Using a Completely Automated Solid-Phase Extraction-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Method. J. Anal. Toxicol. 2008, 32, 570–576, doi:10.1093/jat/32.8.570.
[11]  Idborg, H.; Zamani, L.; Edlund, P.O.; Schuppe-Koistinen, I.; Jacobsson, S.P. Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B 2005, 828, 9–13, doi:10.1016/j.jchromb.2005.07.031.
[12]  Stefan Blech, R.L. Resolving the microcosmos of complex samples: UPLC/travelling wave ion mobility separation high resolution mass spectrometry for the analysis of in vivo drug metabolism studies. Int. J. Ion. Mob. Spec. 2013, 16, 5–17, doi:10.1007/s12127-012-0113-1.
[13]  Kind, T.; Fiehn, O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanal. Rev. 2010, 2, 23–60, doi:10.1007/s12566-010-0015-9.
[14]  Thomas, M.C.; Dunn, S.R.; Altvater, J.; Dove, S.G.; Nette, G.W. Rapid identification of long-chain polyunsaturated fatty acids in a marine extract by HPLC-MS using data-dependent acquisition. Anal. Chem. 2012, 84, 5976–5983, doi:10.1021/ac3006523.
[15]  Oberacher, H.; Schubert, B.; Libiseller, K.; Schweissgut, A. Detection and identification of drugs and toxicants in human body fluids by liquid chromatography-tandem mass spectrometry under data-dependent acquisition control and automated database search. Anal. Chim. Acta 2013, 770, 121–131, doi:10.1016/j.aca.2013.01.057.
[16]  Thalassinos, K.; Vissers, J.P.; Tenzer, S.; Levin, Y.; Thompson, J.W.; Daniel, D.; Mann, D.; DeLong, M.R.; Moseley, M.A.; America, A.H.; et al. Design and application of a data-independent precursor and product ion repository. J. Am. Soc. Mass Spectrom. 2012, 23, 1808–1820, doi:10.1007/s13361-012-0416-9.
[17]  Bateman, K.P.; Castro-Perez, J.; Wrona, M.; Shockcor, J.P.; Yu, K.; Oballa, R.; Nicoll-Griffith, D.A. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun. Mass Spectrom. 2007, 21, 1485–1496, doi:10.1002/rcm.2996.
[18]  Castro-Perez, J.M.; Kamphorst, J.; DeGroot, J.; Lafeber, F.; Goshawk, J.; Yu, K.; Shockcor, J.P.; Vreeken, R.J.; Hankemeier, T. Comprehensive LC-MSE Lipidomic Analysis using a Shotgun Approach and Its Application to Biomarker Detection and Identification in Osteoarthritis Patients. J. Proteome Res. 2010, 9, 2377–2389, doi:10.1021/pr901094j.
[19]  Plumb, R.S.; Johnson, K.A.; Rainville, P.; Smith, B.W.; Wilson, I.D.; Castro-Perez, J.M.; Nicholson, J.K. UPLC/MS(E); A new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 2006, 20, 1989–1994, doi:10.1002/rcm.2550.
[20]  Zhu, M.; Zhang, H.; Humphreys, W.G. Drug metabolite profiling and identification by high-resolution mass spectrometry. J. Biol. Chem. 2011, 286, 25419–25425, doi:10.1074/jbc.R110.200055.
[21]  Zhao, Y.Y.; Cheng, X.L.; Wei, F.; Bai, X.; Tan, X.J.; Lin, R.C.; Mei, Q. Intrarenal metabolomic investigation of chronic kidney disease and its TGF-beta1 mechanism in induced-adenine rats using UPLC Q-TOF/HSMS/MS(E). J. Proteome Res. 2013, 12, 692–703, doi:10.1021/pr3007792.
[22]  Zhao, Y.-Y.; Shen, X.; Cheng, X.-L.; Wei, F.; Bai, X.; Lin, R.-C. Urinary metabonomics study on the protective effects of ergosta-4,6,8(14),22-tetraen-3-one on chronic renal failure in rats using UPLC Q-TOF/MS and a novel MSE data collection technique. Process Biochem. 2012, 47, 1980–1987, doi:10.1016/j.procbio.2012.07.008.
[23]  Pieroni, L.; Finamore, F.; Ronci, M.; Mattoscio, D.; Marzano, V.; Mortera, S.L.; Quattrucci, S.; Federici, G.; Romano, M.; Urbani, A. Proteomics investigation of human platelets in healthy donors and cystic fibrosis patients by shotgun nUPLC-MSE and 2DE: A comparative study. Mol. Biosyst. 2011, 7, 630–639, doi:10.1039/c0mb00135j.
[24]  Hummel, M.; Cordewener, J.H.; de Groot, J.C.; Smeekens, S.; America, A.H.; Hanson, J. Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. Proteomics 2012, 12, 1024–1038, doi:10.1002/pmic.201100413.
[25]  Walles, M.; Gauvin, C.; Morin, P.E.; Panetta, R.; Ducharme, J. Comparison of sub-2-μm particle columns for fast metabolite ID. J. Sep. Sci. 2007, 30, 1191–1199, doi:10.1002/jssc.200600538.
[26]  Castro-Perez, J.; Roddy, T.P.; Nibbering, N.M.M.; Shah, V.; McLaren, D.G.; Previs, S.; Attygalle, A.B.; Herath, K.; Chen, Z.; Wang, S.P.; et al. Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 2011, 22, 1552–1567, doi:10.1007/s13361-011-0172-2.
[27]  Bohrer, B.C.; Clemmer, D.E. Biologically-Inspired peptide reagents for enhancing IMS-MS analysis of carbohydrates. J. Am. Soc. Mass Spectrom. 2011, 22, 1602–1609, doi:10.1007/s13361-011-0168-y.
[28]  Dwivedi, P.; Schultz, A.J.; Hill, H.H. Metabolic profiling of human blood by high-resolution ion mobility mass spectrometry (IM-MS). Int. J. Mass Spectrom. 2010, 298, 78–90, doi:10.1016/j.ijms.2010.02.007.
[29]  Giles, K.; Williams, J.P.; Campuzano, I. Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 2011, 25, 1559–1566, doi:10.1002/rcm.5013.
[30]  Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330, doi:10.1016/j.phytochem.2004.04.025.
[31]  Jirasko, R.; Holcapek, M.; Vrublova, E.; Ulrichova, J.; Simanek, V. Identification of new phase II metabolites of xanthohumol in rat in vivo biotransformation of hop extracts using high-performance liquid chromatography electrospray ionization tandem mass spectrometry. J. Chromatogr. A 1217, 4100–4108.
[32]  Legette, L.L.; Moreno Luna, A.Y.; Reed, R.L.; Miranda, C.L.; Bobe, G.; Proteau, R.R.; Stevens, J.F. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry 2012, 91, 236–241.
[33]  Legette, L.; Ma, L.; Reed, R.L.; Miranda, C.L.; Christensen, J.M.; Rodriguez-Proteau, R.; Stevens, J.F. Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol. Nutr. Food Res. 2012, 56, 466–474, doi:10.1002/mnfr.201100554.
[34]  Kooijman, E.E.; Burger, K.N.J. Biophysics and function of phosphatidic acid: A molecular perspective. BBA-Mol. Cell Biol. L. 2009, 1791, 881–888.
[35]  Rancoule, C.; Attané, C.; Grès, S.; Fournel, A.; Dusaulcy, R.; Bertrand, C.; Vinel, C.; Tréguer, K.; Prentki, M.; Valet, M.; et al. Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice. Diabetologia 2013, 56, 1394–1402, doi:10.1007/s00125-013-2891-3.
[36]  Lee, Y.M.; Hsieh, K.H.; Lu, W.J.; Chou, H.C.; Chou, D.S.; Lien, L.M.; Sheu, J.R.; Lin, K.H. Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus), Prevents Platelet Activation in Human Platelets. Evid.-based Complement Altern. Med. 2012. Article ID 852362.
[37]  Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem. 2005, 77, 4108–4116, doi:10.1021/ac0481001.
[38]  Fuchs, B.; Schiller, E.; Wagner, U.; Hantzschel, H.; Arnold, K. The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: Investigations by P-31 NMR and MALDI-TOF MS. Clin. Biochem. 2005, 38, 925–933.
[39]  Nozawa, H. Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-A(y) mice. Biochem. Biophys. Res. Commun. 2005, 336, 754–761, doi:10.1016/j.bbrc.2005.08.159.
[40]  Mortensen, P.B. Formation and degradation of dicarboxylic acids in relation to alterations in fatty acid oxidation in rats. Biochim. Biophys. Acta 1124, 71–79.
[41]  Kirkwood, J.S.; Legette, L.L.; Miranda, C.L.; Jiang, Y.; Stevens, J.F. A metabolomics driven elucidation of the anti-obesity mechanisms of xanthohumol. J. Biol. Chem. 2013, doi:10.1074/jbc.M112.445452.
[42]  Dwivedi, P.; Wu, P.; Klopsch, S.J.; Puzon, G.J.; Xun, L.; Hill, H.H., Jr. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 2008, 4, 63–80, doi:10.1007/s11306-007-0093-z.
[43]  Shimizu, A.; Ohe, T.; Chiba, M. A novel method for the determination of the site of glucuronidation by ion mobility spectrometry-mass spectrometry. Drug Metab. Dispos. 2012, 40, 1456–1459, doi:10.1124/dmd.112.045435.
[44]  Williams, M.D.; Reeves, R.; Resar, L.S.; Hill, H.H., Jr. Metabolomics of colorectal cancer: Past and current analytical platforms. Anal. Bioanal. Chem. 2013, 405, 5013–5030, doi:10.1007/s00216-013-6777-5.
[45]  Ridenour, W.B.; Kliman, M.; McLean, J.A.; Caprioli, R.M. Structural characterization of phospholipids and peptides directly from tissue sections by MALDI traveling-wave ion mobility-mass spectrometry. Anal. Chem. 2010, 82, 1881–1889, doi:10.1021/ac9026115.
[46]  Kliman, M.; May, J.C.; McLean, J.A. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. BBA-Mol. Cell Biol. L. 2011, 1811, 935–945.
[47]  Li, H.L.; Giles, K.; Bendiak, B.; Kaplan, K.; Siems, W.F.; Hill, H.H. Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. Anal. Chem. 2012, 84, 3231–3239, doi:10.1021/ac203116a.
[48]  Clowers, B.H.; Dwivedi, P.; Steiner, W.E.; Hill, H.H.; Bendiak, B. Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectr. 2005, 16, 660–669, doi:10.1016/j.jasms.2005.01.010.
[49]  Kaplan, K.A.; Chiu, V.M.; Lukus, P.A.; Zhang, X.; Siems, W.F.; Schenk, J.O.; Hill, H.H. Neuronal metabolomics by ion mobility mass spectrometry: Cocaine effects on glucose and selected biogenic amine metabolites in the frontal cortex, striatum, and thalamus of the rat. Anal. Bioanal. Chem. 2013, 405, 1959–1968, doi:10.1007/s00216-012-6638-7.
[50]  Tautenhahn, R.; Bottcher, C.; Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinf. 2008, 9, 504, doi:10.1186/1471-2105-9-504.
[51]  Xia, J.G.; Mandal, R.; Sinelnikov, I.V.; Broadhurst, D.; Wishart, D.S. MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012, 40, W127–W133, doi:10.1093/nar/gks374.
[52]  Xia, J.G.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660, doi:10.1093/nar/gkp356.
[53]  Zhou, B.; Wang, J.L.; Ressom, H.W. MetaboSearch: Tool for mass-based metabolite identification using multiple databases. Plos One 2012, 7, e40096, doi:10.1371/journal.pone.0040096.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133