Our previous study on the identification of common odorants and their conjugates in human urine demonstrated that this substance fraction is a little-understood but nonetheless a promising medium for analysis and diagnostics in this easily accessible physiological medium. Smell as an indicator for diseases, or volatile excretion in the course of dietary processes bares high potential for a series of physiological insights. Still, little is known today about the quantitative composition of odorous or volatile targets, as well as their non-volatile conjugates, both with regard to their common occurrence in urine of healthy subjects, as well as in that of individuals suffering from diseases or other physiological misbalancing. Accordingly, the aim of our study was to develop a highly sensitive and selective approach to determine the common quantitative composition of selected odorant markers in healthy human subjects, as well as their corresponding glucuronide conjugates. We used one- and two-dimensional high resolution gas chromatography-mass spectrometry in combination with stable isotope dilution assays to quantify commonly occurring and potent odorants in human urine. The studies were carried out on both native urine and on urine that had been treated by glucuronidase assays, with analysis of the liberated odor-active compounds using the same techniques. Analytical data are discussed with regard to their potential translation as future diagnostic tool.
Liebich, H.M. Specific detection of volatile metabolites in urines of normal subjects and patients with diabetes mellitus using computerized mass fragmentography. J. Chromatogr. 1975, 112, 551–557, doi:10.1016/S0021-9673(00)99984-9.
[3]
Liebich, H.M.; Albabbili, O. Gas chromatographic-mass spectrometric study of volatile organic metabolites in urines of patients with diabetes-mellitus. J. Chromatogr. 1975, 112, 539–550, doi:10.1016/S0021-9673(00)99983-7.
[4]
Zlatkis, A.; Liebich, H.M. Profile of volatile metabolites in human urine. Fresen. Z. Anal. Chem. 1972, 259, 212–213, doi:10.1007/BF00428443.
[5]
Zlatkis, A.; Bertsch, W.; Lichtenstein, H.A.; Tishbee, A.; Shunbo, F.; Liebich, H.M.; Coscia, A.M.; Fleische, N. Profile of volatile metabolites in urine by Gas-Chromatography-mass spectrometry. Anal. Chem. 1973, 45, 763–767, doi:10.1021/ac60326a036.
[6]
Wagenstaller, M.; Buettner, A. Characterization of odorants in human urine using a combined chemo-analytical and human-sensory approach: A potential diagnostic strategy. Metabolomics 2013, 9, 9–20, doi:10.1007/s11306-012-0425-5.
[7]
Smith, D.; Ismail, K.M.K.; Diskin, A.M.; Chapman, G.; Magnay, J.L.; Spanel, P.; O'Brien, S. Increase of acetone emitted by urine in relation to ovulation. Acta Obstet. Gynecol. Scand. 2006, 85, 1008–1011, doi:10.1080/00016340600590535.
[8]
Podebrad, F.; Heil, M.; Reichert, S.; Mosandl, A.; Sewell, A.C.; B?hles, H. 4,5-dimethyl-3-hydroxy-2[5h]-furanone (sotolone)—The odour of maple syrup urine disease. J. Inherited Metab. Dis. 1999, 22, 107–114, doi:10.1023/A:1005433516026.
[9]
European urinalysis guidelines—Summary. Scand. J. Clin. Lab. Invest. 2000, 60, 1–96, doi:10.1080/00365510050184985.
[10]
Rehman, H.U. Fish odour syndrome. Postgrad. Med. J. 1999, 75, 451–452.
[11]
Johnson, E.; Smith, S.; Probert, C.; Persad, R.; Ratcliffe, N.; Ahmed, I. Volatile organic compounds in urine: Potential biomarkers for prostate cancer. Br. J. Surg. 2011, 98, E3.
[12]
Spanel, P.; Smith, D.; Holland, T.A.; Singary, W.A.; Elder, J.B. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 1354–1359, doi:10.1002/(SICI)1097-0231(19990730)13:14<1354::AID-RCM641>3.0.CO;2-J.
[13]
Silva, C.L.; Passos, M.; Camara, J.S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers-a powerful strategy for breast cancer diagnosis. Talanta 2012, 89, 360–368, doi:10.1016/j.talanta.2011.12.041.
[14]
Willis, C.; Church, S.; Guest, C.; Cook, W.; McCarthy, N.; Bransbury, A.; Church, M.; Church, J. Olfactory detection of human bladder cancer by dogs: Proof of principle study. Br. Med. J. 2004.
[15]
Cornu, J.N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. Eur. Urol. 2011, 59, 197–201, doi:10.1016/j.eururo.2010.10.006.
[16]
Banday, K.; Pasikanti, K.; Chan, E.; Singla, R.; Rao, K.; Chauhan, V.; Nanda, R. Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal. Chem. 2011, 83, 5526–5534, doi:10.1021/ac200265g.
[17]
Guernion, N.; Ratcliffe, N.M.; Spencer-Phillips, P.T.N.; Howe, R.A. Identifying bacteria in human urine: Current practice and the potential for rapid, near-patient diagnosis by sensing volatile organic compounds. Clin. Chem. Lab. Med. 2001, 39, 893–906.
Mitchell, S.C. Food idiosyncrasies: Beetroot and asparagus. Drug Metab. Dispos. 2001, 29, 539–543.
[20]
Pelchat, M.L.; Bykowski, C.; Duke, F.F.; Reed, D.R. Excretion and perception of a characteristic odor in urine after asparagus ingestion: A psychophysical and genetic study. Chem. Senses 2011, 36, 9–17, doi:10.1093/chemse/bjq081.
[21]
Husoy, T.; Haugen, M.; Murkovic, M.; Joebstl, D.; Stolen, L.H.; Bjellaas, T.; Ronningborg, C.; Glatt, H.; Alexander, J. Dietary exposure to 5-hydroxymethylfurfural from norwegian food and correlations with urine metabolites of short-term exposure. Food Chem. Toxicol. 2008, 46, 3697–3702, doi:10.1016/j.fct.2008.09.048.
[22]
Roscher, R.; Koch, H.; Herderich, M.; Schreier, P.; Schwab, W. Identification of 2,5-dimethyl-4-hydroxy-3[2h]-furanone beta-d-glucuronide as the major metabolite of a strawberry flavour constituent in humans. Food Chem. Toxicol. 1997, 35, 777–782, doi:10.1016/S0278-6915(97)00055-0.
[23]
Zeller, A.; Horst, K.; Rychlik, M. Study of the metabolism of estragole in humans consuming fennel tea. Chem. Res. Toxicol. 2009, 22, 1929–1937, doi:10.1021/tx900236g.
[24]
Hodgson, E. A Textbook of Modern Toxicology, 3rd ed. ed.; Wiley: Hoboken, New Jersey, USA, 2004.
[25]
Ernst, B.; V?gtli, A. Moderne Pharmakokinetik; Wiley: Weinheim, Germany, 2010.
[26]
Lüllmann, H.; Mohr, K.; Hein, L. Pharmakologie und Toxikologie: Arzneimittelwirkungen Verstehen-Medikamente Gezielt Einsetzen; Thieme: Stuttgart, Germany, 2010.
[27]
Thierauf, A.; Perdekamp, M.G.; Weinmann, W.; Auwaerter, V. Markers of ethanol consumption. Rechtsmedizin 2011, 21, 69–77, doi:10.1007/s00194-010-0729-6.
[28]
Wurst, F.M.; Kempter, C.; Seidl, S.; Alt, A. Ethyl glucuronide—A marker of alcohol consumption and a relapse marker with clinical and forensic implications. Alcohol Alcohol. 1999, 34, 71–77, doi:10.1093/alcalc/34.1.71.
[29]
Liston, H.L.; Markowitz, J.S.; DeVane, C.L. Drug glucuronidation in clinical psychopharmacology. J. Clin. Psychopharmacol. 2001, 21, 500–515, doi:10.1097/00004714-200110000-00008.
[30]
Miners, J.O.; Mackenzie, P.I. Drug glucuronidation in humans. Pharmacol. Ther. 1991, 51, 347–369, doi:10.1016/0163-7258(91)90065-T.
Czernik, P.J.; Little, J.M.; Barone, G.W.; Raufman, J.P.; Radominska-Pandya, A. Glucuronidation of estrogens and retinoic acid and expression of udp-glucuronosyltransferase 2b7 in human intestinal mucosa. Drug Metab. Dispos. 2000, 28, 1210–1216.
[33]
Matern, S.; Matern, H.; Farthmann, E.H.; Gerok, W. Hepatic and extrahepatic glucuronidation of bile-acids in man - characterization of bile-acid uridine 5′-diphosphate-glucuronosyltransferase in hepatic, renal, and intestinal microsomes. J. Clin. Invest. 1984, 74, 402–410, doi:10.1172/JCI111435.
[34]
McGurk, K.A.; Brierley, C.H.; Burchell, B. Drug glucuronidation by human renal udp-glucuronosyltransferases. Biochem. Pharmacol. 1998, 55, 1005–1012, doi:10.1016/S0006-2952(97)00534-0.
[35]
Turgeon, D.; Carrier, J.S.; Chouinard, S.; Belanger, A. Glucuronidation activity of the UGT2B17 enzyme toward xenobiotics. Drug Metab. Dispos. 2003, 31, 670–676, doi:10.1124/dmd.31.5.670.
Czerny, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273, doi:10.1007/s00217-008-0931-x.
[38]
Pino, J.A.; Mesa, J. Contribution of volatile compounds to mango (mangifera indica l.) aroma. Flavour Fragrance 2006, 21, 207–213.
[39]
Schieberle, P. Primary odorants of pale lager beer—differences to other beers and changes during storage. Z. Lebensm. Unters. For. 1991, 193, 558–565, doi:10.1007/BF01190873.
[40]
Semmelroch, P.; Laskawy, G.; Blank, I.; Grosch, W. Determination of potent odourants in roasted coffee by stable isotope dilution assays. Flavour Fragrance 1995, 10, 1–7, doi:10.1002/ffj.2730100102.
[41]
Buttery, R.G.; Ling, L.C.; Bean, M.M. Coumarin off-odor in wheat-flour. J. Agric. Food Chem. 1978, 26, 179–180, doi:10.1021/jf60215a071.
[42]
Buttery, R.G.; Ling, L.C.; Stern, D.J. Studies on popcorn aroma and flavor volatiles. J. Agric. Food Chem. 1997, 45, 837–843, doi:10.1021/jf9604807.
[43]
Milo, C. Odorants of boiled trout, boiled cod and salmon before and after storage of the raw material; TU Munich: Munich, Germany, 1995.
[44]
Pyysalo, H.; Suihko, M. Odour characterization and threshold values of some compounds in fresh mushrooms. Lebensm. Wiss. Technol. 1976, 9, 371–373.
[45]
Belitz, H.-D.; Grosch, W.; Schieberle, P. Lehrbuch der Lebensmittelchemie, 6th ed. ed.; Springer: Berlin, Germany, 2008.
[46]
Wagenstaller, M.; Buettner, A. Excretion of coffee aroma constituents and odorant metabolites into human urine. Metabolomics 2013. submitted.
[47]
Nationale Verzehrsstudie II. Ergebnisbericht Teil 2. Die Bundesweite Befragung zur Ern?hrung von Jugendlichen und Erwachsenen; Max Rubner-Institut: Karlruhe, Germany, 2008.
[48]
Davy, S.R.; Benes, B.A.; Driskell, J.A. Sex differences in dieting trends, eating habits, and nutrition beliefs of a group of midwestern college students. J. Am. Diet. Assoc. 2006, 106, 1673–1677, doi:10.1016/j.jada.2006.07.017.
[49]
Wardle, J.; Haase, A.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisie, F. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. 2004, 27, 107–116, doi:10.1207/s15324796abm2702_5.
[50]
Troccaz, M.; Niclass, Y.; Anziani, P.; Starkenmann, C. The influence of thermal reaction and microbial transformation on the odour of human urine. Flavour Fragrance 2013, 28, 200–211, doi:10.1002/ffj.3143.
[51]
Dills, R.; Paulsen, M.; Ahmad, J.; Kalman, D.; Elias, F.; Simpson, C. Evaluation of urinary methoxyphenols as biomarkers of woodsmoke exposure. Environ. Sci. Technol. 2006, 40, 2163–2170, doi:10.1021/es051886f.
[52]
Dills, R.; Zhu, X.; Kalman, D. Measurement of urinary methoxyphenols and their use for biological monitoring of wood smoke exposure. Environ. Res. 2001, 85, 145–158.
[53]
Neitzel, R.; Naeher, L.; Paulsen, M.; Dunn, K.; Stock, A.; Simpson, C. Biological monitoring of smoke exposure among wildland firefighters: A pilot study comparing urinary methoxyphenols with personal exposures to carbon monoxide, particular matter, and levoglucosan. J. Exposure Sci. Environ. Epidemiol. 2009, 19, 349–358, doi:10.1038/jes.2008.21.
[54]
Bieniek, G. Simultaneous determination of 2-methoxyphenol, 2-methoxy-4-methylphenol, 2,6-dimethoxyphenol and 4′-hydroxy-3′-methoxyacetophenone in urine by capillary gas chromatography. J. Chromatogr. B 2003, 795, 389–394, doi:10.1016/S1570-0232(03)00593-2.
[55]
Chalmers, R.A.; Bickle, S.; Watts, R.W.E. Method for determination of volatile organic acids in aqueous solutions and urine, and results obtained in propionic acidemia, beta-methylcrotonylglycinuria and methylmalonic aciduria. Clin. Chim. Acta 1974, 52, 31–41, doi:10.1016/0009-8981(74)90385-4.
[56]
Perry, T.L.; Hansen, S.; Diamond, S.; Bullis, B.; Mok, C.; Melan?on, S.B. Volatile fatty acids in normal human physiological fluids. Clin. Chim. Acta 1970, 29, 369–374, doi:10.1016/0009-8981(70)90004-5.
[57]
Mullangi, R.; Bhamidipati, R.K.; Srinivas, N.R. Bioanalytical aspects in characterization and quantification of glucuronide conjugates in various biological matrices. Curr. Pharm. Anal. 2005, 1, 251–264, doi:10.2174/157341205774597931.
[58]
Williams, D.A. Drug metabolism. In Foye’s Principles of Medicinal Chemistry; Foye, W.O., Lemke, T.L., Williams, D.A., Eds.; Lippincott Williams & Wilkins: Philadelphia, Pennsylvania, USA, 2008.
[59]
Fox, M.A.; Whitesell, J.K. Mechanisms of organic reactions. In Organic Chemistry, 3rd ed.; Fox, M.A., Whitesell, J.K., Eds.; Jones and Bartlett Publishers: Boston, MA, USA, 2004; p. 322.
[60]
Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation - a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241, doi:10.1007/s002170050486.
[61]
Bemelmans, J.M.H. Review of isolation and concentration techniques. In Progress in Flavour Research; Land, D.G., Nursten, H.E., Eds.; Applied Science Publisher: London, UK, 1979; pp. 79–88.
[62]
Kirchhoff, E.; Schieberle, P. Determination of key aroma compounds in the crumb of a three-stage sourdough rye bread by stable isotope dilution assays and sensory studies. J. Agric. Food Chem. 2001, 49, 4304–4311, doi:10.1021/jf010376b.