The complementary use of liquid chromatography (LC) and nuclear magnetic resonance (NMR) has shown high utility in a variety of fields. While the significant benefit of spectral simplification can be achieved for the analysis of complex samples, other limitations remain. For example, 1H LC-NMR suffers from pH dependent chemical shift variations, especially during urine analysis, owing to the high physiological variation of urine pH. Additionally, large solvent signals from the mobile phase in LC can obscure lower intensity signals and severely limit the number of metabolites detected. These limitations, along with sample dilution, hinder the ability to make reliable chemical shift assignments. Recently, stable isotopic labeling has been used to detect quantitatively specific classes of metabolites of interest in biofluids. Here we present a strategy that explores the combined use of two-dimensional hydrophilic interaction chromatography (HILIC) and isotope tagged NMR for the unambiguous identification of carboxyl containing metabolites present in human urine. The ability to separate structurally related compounds chromatographically, in off-line mode, followed by detection using 1H- 15N 2D HSQC (two-dimensional heteronuclear single quantum coherence) spectroscopy, resulted in the assignment of low concentration carboxyl-containing metabolites from a library of isotope labeled compounds. The quantitative nature of this strategy is also demonstrated.
References
[1]
Nicholson, J.K.; Wilson, I.D. High resolution proton magnetic resonance spectroscopy of biological fluids. Prog. NMR Spectrosc. 1989, 21, 449–501, doi:10.1016/0079-6565(89)80008-1.
[2]
Nicholson, J.K.; Lindon, J.C.; Holmes, E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189, doi:10.1080/004982599238047.
Zhang, S.; Gowda, G.A.N.; Asiago, V.; Shanaiah, N.; Barbas, C.; Raftery, D. Correlative and quantitative 1H-NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal. Biochem. 2008, 383, 76–84, doi:10.1016/j.ab.2008.07.041.
[9]
Gowda, G.A.N.; Zhang, S.; Haiwei, G.; Asiago, V.; Shanaiah, D.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 617–633, doi:10.1586/14737159.8.5.617.
[10]
Nicholson, J.K.; Connely, J.; Lindon, J.C.; Holmes, E. Metabonomics: A platform for studying drug toxicity and gene function. Nat. Rev. 2002, 1, 153–161, doi:10.1038/nrd728.
[11]
Kim, Y.S.; Maruvada, P.; Milner, J.A. Metabolomics in biomarker discovery: Future uses for cancer prevention. Future Oncol. 2008, 1, 93–102.
[12]
Cevallos-Cevallos, J.M.; Reyes-De-Corcuero, J.I.; Danyluka, M.D.; Rodrick, G. Metabolomic analysis in food science: A review. Trends Food. Sci. Technol. 2009, 20, 557–566, doi:10.1016/j.tifs.2009.07.002.
[13]
Fell, D.A. Enzymes, metabolites and fluxes. J. Exp. Bot. 2005, 56, 267–272, doi:10.1093/jxb/eri011.
[14]
Saghatelian, A.; Cravatt, B.F. Global strategies to integrate the proteome and metabolome. Curr. Opin. Chem. Biol. 2005, 9, 62–68, doi:10.1016/j.cbpa.2004.12.004.
[15]
Assfalg, M.; Bertini, I.; Colangiuli, D.; Luchinat, C.; Sch?fer, H.; Schütz, B.; Spraul, M. Evidence of different metabolic phenotypes in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 1420–1424.
Van der Greef, J.; Smilde, A.K. Symbiosis of chemometrics and metabolomics: Past, present and future. J. Chemomet. 2005, 19, 376–386, doi:10.1002/cem.941.
[18]
Lindon, J.C.; Nicholson, J.K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu. Rev. Anal. Chem. 2008, 1, 45–69, doi:10.1146/annurev.anchem.1.031207.113026.
[19]
Spraul, M.; Freund, A.S.; Nast, R.E.; Withers, R.S.; Maas, W.E.; Corcoran, O. Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: Application to the analysis of acetaminophen metabolites in urine. Anal. Chem. 2003, 75, 1536–1541, doi:10.1021/ac026203i.
[20]
Henry, I.D.; Park, G.H.K.; Kc, R.; Tobias, B.; Raftery, D. Design and Construction of a Microcoil NMR Probe for the Routine Analysis of 20 μL Samples. Concepts Magn. Reson. 2008, 1, 1–8.
[21]
Kc, R.; Gowda, Y.N.; Djukovic, D.; Henry, I.D.; Park, G.H.J.; Raftery, D. Susceptibility-matched plugs for microcoil NMR probes. J. Mag. Reson. 2010, 205, 63–68, doi:10.1016/j.jmr.2010.04.001.
[22]
Kc, R.; Henry, I.D.; Park, G.H.J.; Aghdasi, A.; Raftery, D. New Solenoidal Microcoil NMR Probe Using Zero-Susceptibility Wire. Concepts Mag. Reson. B 2010, 37B, 13–19, doi:10.1002/cmr.b.20152.
[23]
Kc, R.; Henry, I.D.; Park, G.H.J.; Raftery, D. Design and Construction of a versatile dual volume double resonance microcoil NMR probe. J. Mag. Reson. 2009, 197, 186–192, doi:10.1016/j.jmr.2008.12.020.
[24]
Gra?a, G.; Duarte, I.F.; Goodfellow, B.J.; Carreira, I.M.; Couciero, A.B.; Domingiues, M.; Spraul, L.; Tseng, L.; Gil, A.M. Metabolite profiling of human amniotic fluid by hyphenated nuclear magnetic resonance spectroscopy. Anal. Chem. 2008, 80, 6085–6092, doi:10.1021/ac800907f.
[25]
Appiah-Amponsah, E.; Shanaiah, N.; Gowda, G.A.N.; Owusu-Sarfo, K.; Ye, T.; Raftery, D. Identification of 4-deoxythreonic acid present in human urine using HPLC and NMR techniques. J. Pharm. Biomed. Anal. 2009, 50, 878–885, doi:10.1016/j.jpba.2009.06.007.
[26]
Djukovic, D.; Appiah-Amponsah, E.; Shanaiah, N.; Gowda, G.A.N.; Henry, I.; Everly, M.; Tobias, B.; Raftery, D. Ibuprofen metabolite profiling using a combination of SPE/column-trapping and HPLC-micro-coil NMR. J. Pharm. Biomed. Anal. 2008, 47, 328–334, doi:10.1016/j.jpba.2007.12.035.
[27]
Guo, K.; Ji, C.; Li, L. Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal. Chem. 2007, 79, 8631–8638, doi:10.1021/ac0704356.
[28]
Sidelmann, U.G.; Bj?rnsdottir, I.; Shockor, J.P.; Hansen, S.H.; Lindon, J.C.; Nicholson, J.K. Directly coupled HPLC-NMR and HPLC-MS approaches for the rapid characterisation of drug metabolites in urine: Application to the human metabolism of naproxen. J. Pharm. Biomed. Anal. 2001, 24, 569–579, doi:10.1016/S0731-7085(00)00482-9.
[29]
Albert, K.; Nieder, M.; Bayer, E.; Spraul, M. Continuous-flow nuclear magnetic resonance. J. Chrom. A 1985, 346, 17–24, doi:10.1016/S0021-9673(00)90489-8.
[30]
Dalvit, C.; Shapiro, G.; Bohlen, J.M.; Parella, T. Technical aspects of an efficient multiple solvent suppression pulse sequence. Magn. Reson. Chem. 1999, 37, 7–14, doi:10.1002/(SICI)1097-458X(199901)37:1<7::AID-MRC398>3.0.CO;2-F.
[31]
Ogg, R.J.; Kingsley, P.B.; Taylor, J.S. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H-NMR spectroscopy. J. Magn. Reson. B 1994, 101, 1–10.
[32]
Liu, M.L.; Mao, X.A.; Ye, C.H.; Huang, H.; Nicholson, J.K.; Lindon, J.C. Improved WATERGATE pulse sequence for solvent suppression in NMR spectroscopy. J. Magn. Reson. 1998, 132, 125–129, doi:10.1006/jmre.1998.1405.
[33]
Nguyen, B.D.; Meng, X.; Donovan, K.J.; Shaka, A.J. SOGGY: Solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. J. Magn. Reson. 2007, 184, 263–274, doi:10.1016/j.jmr.2006.10.014.
[34]
Smallcombe, S.H. Solvent suppression with symmetrically-shifted pulses. J. Am. Chem. Soc. 1993, 115, 4776–4785, doi:10.1021/ja00064a043.
[35]
Asiago, V.M.; Nagana Gowda, G.A.; Zhang, S.; Shanaiah, N.; Clark, J.; Raftery, D. Use of EDTA to Minimize Ionic Strength Dependent Frequency Shifts in the 1H NMR Spectra of Urine. Metabolomics 2008, 4, 328–336, doi:10.1007/s11306-008-0121-7.
Spraul, M.; Hoffmann, M.; Wilson, I.; Lenz, E.; Nicholson, J.K.; Lindon, J.C. Coupling of HPLC with 19F- and 1H-NMR spectroscopy to investigate the human urinary excretion of flurbiprofen metabolites. J. Pharm. Biomed. Anal. 1993, 11, 1009–1015, doi:10.1016/0731-7085(93)80062-6.
[38]
Shanaiah, N.; De Silva, A.M.; Gowda, G.A.N.; Raftery, M.; Hainline, B.E.; Raftery, D. Class Selection of Amino Acid Metabolites in Body Fluids Using Chemical Derivatization and Their 13C NMR Detection. Proc. Natl. Acad. Sci. 2007, 104, 11540–11544.
[39]
De Silva, A.M.; Shanaiah, N.; Gowda, G.A.N.; Rosa-Pérez, K.; Hanson, B.A.; Raftery, D. Application of 31P NMR Spectroscopy and Chemical Derivatization Formetabolite Pro?ling of Lipophilic Compounds in Human Serum. Magn. Reson. Chem. 2009, 47, 574–580.
[40]
Ye, T.; Mo, H.; Shanaiah, N.; Gowda, G.A.N.; Zhang, S.; Raftery, D. Chemoselective 15N Tag for Sensitive and High-Resolution Nuclear Magnetic Resonance Profiling of the Carboxyl-Containing Metabolome. Anal. Chem. 2009, 81, 4882–4888, doi:10.1021/ac900539y.
[41]
Nagana Gowda, G.A.; Tayyari, F.; Ye, T.; Suryani, Y.; Wei, S.; Shanaiah, N.; Raftery, D. Quantitative Analysis of Blood Plasma Metabolites Using Isotope Enhanced NMR Methods. Anal. Chem. 2010, 82, 8983–8990.
[42]
Tolstikov, V.V.; Fiehn, O. Analysis of highly polar compounds of plant origin: Combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 2002, 301, 298–307, doi:10.1006/abio.2001.5513.
[43]
Godejohann, M. Hydrophilic interaction chromatography coupled to nuclear magnetic resonance spectroscopy and mass spectroscopy—A new approach for the separation and identification of extremely polar analytes in bodyfluids. J. Chrom. A 2007, 1156, 87–93.
[44]
Kunishima, M.; Kawachi, C.; Monta, J.; Terao, K.; Iwasaki, F.; Tani, S. 4-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl)-4-methyl-morpholinium chloride: An efficient condensing agent leading to the formation of amides and esters. Tetrahedron 1999, 55, 13159–13170, doi:10.1016/S0040-4020(99)00809-1.
[45]
Kunishima, M.; Kawachi, C.; Hioki, K.; Terao, K.; Tani, S. Formation of carboxamides by direct condensation of carboxylic acids and amines in alcohols using a new alcohol- and water-soluble condensing agent: DMT-MM. Tetrahedron 2001, 57, 1551–1558, doi:10.1016/S0040-4020(00)01137-6.
[46]
Jankowski, J.; van der Giet, M.; Jankowski, V.; Schmidt, S.; Hemeier, M.; Mahn, B.; Giebing, G.; Tolle, M.; Luftmann, H.; Schluter, H.; et al. Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J. Clin. Invest. 2003, 112, 256–264.
[47]
Hagen, T.; Korson, M.S.; Sakamoto, M.; Evans, J.E. A GC/MS/MS screening method for multiple organic acidemias from urine specimens. Clin. Chim. Acta 1999, 283, 77–88, doi:10.1016/S0009-8981(99)00037-6.