全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metabolites  2013 

Transcriptomics and Metabonomics Identify Essential Metabolic Signatures in Calorie Restriction (CR) Regulation across Multiple Mouse Strains

DOI: 10.3390/metabo3040881

Keywords: metabolomics, healthy ageing, calorie restriction, lipidomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Calorie restriction (CR) has long been used to study lifespan effects and oppose the development of a broad array of age-related biological and pathological changes (increase healthspan). Yet, a comprehensive comparison of the metabolic phenotype across different genetic backgrounds to identify common metabolic markers affected by CR is still lacking. Using a system biology approach comprising metabonomics and liver transcriptomics we revealed the effect of CR across multiple mouse strains (129S1/SvlmJ, C57BL6/J, C3H/HeJ, CBA/J, DBA/2J, JC3F1/J). Oligonucleotide microarrays identified 76 genes as differentially expressed in all six strains confirmed. These genes were subjected to quantitative RT-PCR analysis in the C57BL/6J mouse strain, and a CR-induced change expression was confirmed for 14 genes. To fully depict the metabolic pathways affected by CR and complement the changes observed through differential gene expression, the metabolome of C57BL6/J was further characterized in liver tissues, urine and plasma levels using a combination or targeted mass spectrometry and proton nuclear magnetic resonance spectroscopy. Overall, our integrated approach commonly confirms that energy metabolism, stress response, lipids regulators and the insulin/IGF-1 are key determinants factors involved in CR regulation.

References

[1]  Sansoni, P.; Vescovini, R.; Fagnoni, F.; Biasini, C.; Zanni, F.; Zanlari, L.; Telera, A.; Lucchini, G.; Passeri, G.; Monti, D.; et al. The immune system in extreme longevity. Exp. Gerontol. 2008, 43, 61–65, doi:10.1016/j.exger.2007.06.008.
[2]  Franceschi, C. Inflammaging as a major characteristic of old people: Can it be prevented or cured? Nutr. Rev. 2007, 65, 173–176, doi:10.1301/nr.2007.dec.S173-S176.
[3]  Burkle, A.; Caselli, G.; Franceschi, C.; Mariani, E.; Sansoni, P.; Santoni, A.; Vecchio, G.; Witkowski, J.M.; Caruso, C. Pathophysiology of ageing, longevity and age related diseases. Immun. Ageing 2007, 4, 4–17, doi:10.1186/1742-4933-4-4.
[4]  Franceschi, C.; Capri, M.; Monti, D.; Giunta, S.; Olivieri, F.; Sevini, F.; Panourgia, M.P.; Invidia, L.; Celani, L.; Scurti, M.; et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007, 128, 92–105, doi:10.1016/j.mad.2006.11.016.
[5]  Weindruch, R. Caloric restriction and aging. Sci. Am. 1996, 274, 46–52, doi:10.1038/scientificamerican0196-46.
[6]  Roth, G.S.; Lane, M.A.; Ingram, D.K. Caloric restriction mimetics: The next phase. Ann. NY Acad. Sci. 2005, 1057, 365–371, doi:10.1196/annals.1356.027.
[7]  Anderson, R.M.; Weindruch, R. Metabolic reprogramming, caloric restriction and aging. Trends Endocrin. Metab 2010, 21, 134–141.
[8]  Weindruch, R.; Naylor, P.H.; Goldstein, A.L.; Walford, R.L. Influences of aging and dietary restriction on serum thymosin alpha 1 levels in mice. J. Gerontol. 1988, 43, B40–B42, doi:10.1093/geronj/43.2.B40.
[9]  Selman, C.; Withers, D.J. Mammalian models of extended healthy lifespan. Philos. T. R. Soc. B. 2011, 366, 99–107, doi:10.1098/rstb.2010.0243.
[10]  Fontana, L.; Partridge, L.; Longo, V.D. Extending healthy life span—from yeast to humans. Science 2010, 328, 321–326, doi:10.1126/science.1172539.
[11]  Fontana, L.; Villareal, D.T.; Weiss, E P.; Racette, S.B.; Steger-May, K.; Klein, S.; Holloszy, J.O. Calorie restriction or exercise: Effects on coronary heart disease risk factors. A randomized, controlled trial. Am. J. Physiol—Endoc. M. 2007, 293, 197–202.
[12]  Weindruch, R.; Walford, R.L.; Fligiel, S.; Guthrie, D. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake. J. Nutr. 1986, 116, 641–654.
[13]  Kealy, R.D.; Lawler, D.F.; Ballam, J.M.; Mantz, S.L.; Biery, D.N.; Greeley, E.H. Effects of diet restriction on life span and age-related changes in dogs. J. Am. Vet. Med. A. 2001, 220, 1315–1320.
[14]  Forster, M.J.; Morris, P.; Sohal, R.S. Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J. 2003, 17, 690–692.
[15]  De Grey, A.D. The unfortunate influence of the weather on the rate of ageing: Why human caloric restriction or its emulation may only extend life expectancy by 2–3 years. Gerontology 2005, 51, 73–82, doi:10.1159/000082192.
[16]  Heilbronn, L.K.; Ravussin, E. Calorie restriction and aging: Review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 2003, 78, 361–369.
[17]  Suzuki, M.; Akisaka, M.; Ashitomi, I.; Higa, K.; Nozaki, H. Chronological study concerning ADL among Okinawan centenarians. Nippon Ronen Igakkai Zasshi 1995, 32, 416–423, doi:10.3143/geriatrics.32.416.
[18]  Willcox, D.C.; Willcox, B.J.; Shimajiri, S.; Kurechi, S.; Suzuki, M. Aging gracefully: A retrospective analysis of functional status in Okinawan centenarians. Am. J. Geriat. Psychiat. 2007, 15, 252–256, doi:10.1097/JGP.0b013e31803190cc.
[19]  Walford, R.L.; Mock, D.; Verdery, R.; MacCallum, T. Calorie restriction in biosphere 2: Alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J. Gerontol. A—Biol. 2002, 57, B211–B224, doi:10.1093/gerona/57.6.B211.
[20]  Ingram, D.K.; Zhu, M.; Mamczarz, J.; Zou, S.; Lane, M.A.; Roth, G.S.; de Cabo, R. Calorie restriction mimetics: An emerging research field. Aging Cell 2006, 5, 97–108, doi:10.1111/j.1474-9726.2006.00202.x.
[21]  Masoro, E.J. Dietary restriction and aging. J. Am. Geriatr. Soc. 1993, 41, 994–999.
[22]  Fontana, L.; Meyer, T.E.; Klein, S.; Holloszy, J.O. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc. Natl. Acad. Sci. USA 2004, 101, 6659–6663.
[23]  Mattison, J.A.; Roth, G.S.; Beasley, T.M.; Tilmont, E.M.; Handy, A.M.; Herbert, R.L.; Longo, D.L.; Allison, D.B.; Young, J.E.; Bryant, M.; et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012, 489, 318–321, doi:10.1038/nature11432.
[24]  Liao, C.Y.; Rikke, B.A.; Johnson, T.E.; Diaz, V.; Nelson, J.F. Genetic variation in the murine lifespan response to dietary restriction: From life extension to life shortening. Aging Cell 2010, 9, 92–95, doi:10.1111/j.1474-9726.2009.00533.x.
[25]  Wijeyesekera, A.; Selman, C.; Barton, R.H.; Holmes, E.; Nicholson, J.K.; Withers, D.J. Metabotyping of long-lived mice using 1H NMR spectroscopy. J. Proteome. Res. 2012, 11, 2224–2235, doi:10.1021/pr2010154.
[26]  Selman, C.; Kerrison, N.D.; Cooray, A.; Piper, M.D.; Lingard, S.J.; Barton, R.H.; Schuster, E.F.; Blanc, E.; Gems, D.; Nicholson, J.K.; et al. Coordinated multi-tissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol. Genomics 2006, 27, 187–200, doi:10.1152/physiolgenomics.00084.2006.
[27]  Wang, Y.; Lawler, D.; Larson, B.; Ramadan, Z.; Kochhar, S.; Holmes, E.; Nicholson, J.K. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J. Proteome Res. 2007, 6, 1846–1854, doi:10.1021/pr060685n.
[28]  Rezzi, S.; Martin, F.P.; Shanmuganayagam, D.; Colman, R.J.; Nicholson, J.K.; Weindruch, R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp. Gerontol. 2009, 44, 356–362, doi:10.1016/j.exger.2009.02.008.
[29]  Boulange, C.L.; Claus, S.P.; Chou, C.J.; Collino, S.; Montoliu, I.; Kochhar, S.; Holmes, E.; Rezzi, S.; Nicholson, J.K.; Dumas, M.E.; et al. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. J. Proteome Res. 2013, 12, 1956–1986, doi:10.1021/pr400051s.
[30]  West, D.B.; Boozer, C.N.; Moody, D.L.; Atkinson, R.L. Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992, 262, R1025–R1032.
[31]  Champy, M.F.; Selloum, M.; Zeitler, V.; Caradec, C.; Jung, B.; Rousseau, S.; Pouilly, L.; Sorg, T.; Auwerx, J. Genetic background determines metabolic phenotypes in the mouse. Mamm. Genome 2008, 19, 318–331, doi:10.1007/s00335-008-9107-z.
[32]  Ni, Y.; Su, M.; Lin, J.; Wang, X.; Qiu, Y.; Zhao, A.; Chen, T.; Jia, W. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett. 2008, 582, 2627–2636, doi:10.1016/j.febslet.2008.06.040.
[33]  Coleman, E.A.; Eilertsen, T.B.; Magid, D.J.; Conner, D.A.; Beck, A.; Kramer, A.M. The association between care co-ordination and emergency department use in older managed care enrollees. Int. J. Integr. Care 2002, 2, e03.
[34]  Adams, S.H.; Hoppel, C.L.; Lok, K.H.; Zhao, L.; Wong, S.W.; Minkler, P.E.; Hwang, D.H.; Newman, J.W.; Garvey, W.T. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J. Nutr. 2009, 139, 1073–1081, doi:10.3945/jn.108.103754.
[35]  Noland, R.C.; Koves, T.R.; Seiler, S.E.; Lum, H.; Lust, R.M.; Ilkayeva, O.; Stevens, R.D.; Hegardt, F.G.; Muoio, D.M. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J. Biol. Chem. 2009, 284, 22840–22852, doi:10.1074/jbc.M109.032888.
[36]  Bauer, M.; Hamm, A.C.; Bonaus, M.; Jacob, A.; Jaekel, J.; Schorle, H.; Pankratz, M.J.; Katzenberger, J.D. Starvation response in mouse liver shows strong correlation with life-span-prolonging processes. Physiol. Genomics 2004, 17, 230–244, doi:10.1152/physiolgenomics.00203.2003.
[37]  Dhahbi, J.M.; Mote, P.L.; Wingo, J.; Tillman, J.B.; Walford, R.L.; Spindler, S.R. Calories and aging alter gene expression for gluconeogenic, glycolytic, and nitrogen-metabolizing enzymes. Am. J. Physiol. 1999, 277, E352–E360.
[38]  Kabe, Y.; Ohmori, M.; Shinouchi, K.; Tsuboi, Y.; Hirao, S.; Azuma, M.; Watanabe, H.; Okura, I.; Handa, H. Porphyrin accumulation in mitochondria is mediated by 2-oxoglutarate carrier. J. Biol. Chem. 2006, 281, 31729–31735, doi:10.1074/jbc.M604729200.
[39]  Barger, J.L.; Kayo, T.; Vann, J.M.; Arias, E.B.; Wang, J.; Hacker, T.A.; Wang, Y.; Raederstorff, D.; Morrow, J.D.; Leeuwenburgh, C.; et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 2008, 3, 2264–2272, doi:10.1371/journal.pone.0002264.
[40]  Rider, M.H.; Bertrand, L.; Vertommen, D.; Michels, P.A.; Rousseau, G.G.; Hue, L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem. J. 2004, 381, 561–579, doi:10.1042/BJ20040752.
[41]  Pilloff, D.; Dabovic, K.; Romanowski, M.J.; Bonanno, J.B.; Doherty, M.; Burley, S.K.; Leyh, T.S. The kinetic mechanism of phosphomevalonate kinase. J. Biol. Chem. 2003, 278, 4510–4515.
[42]  Richards, S.E.; Wang, Y.; Lawler, D.; Kochhar, S.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Self-modeling curve resolution recovery of temporal metabolite signal modulation in NMR spectroscopic data sets: Application to a life-long caloric restriction study in dogs. Anal. Chem. 2008, 80, 4876–4885, doi:10.1021/ac702584g.
[43]  Kochhar, S.; Jacobs, D.M.; Ramadan, Z.; Berruex, F.; Fuerholz, A.; Fay, L.B. Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics. Anal. Biochem. 2006, 352, 274–281, doi:10.1016/j.ab.2006.02.033.
[44]  Pereira, S.P.; Cassell, T.B.; Engelman, J.L.; Sladen, G.E.; Murphy, G.M.; Dowling, R.H. Plasma arachidonic acid-rich phospholipids in Crohn’s disease: Response to treatment. Clin. Sci. 1996, 91, 509–512.
[45]  Bartke, A. Insulin resistance and cognitive aging in long-lived and short-lived mice. J. Gerontol. A—Biol. 2005, 60, 133–134, doi:10.1093/gerona/60.1.133.
[46]  Barger, J.L.; Kayo, T.; Pugh, T.D.; Prolla, T.A.; Weindruch, R. Short-term consumption of a resveratrol-containing nutraceutical mixture mimics gene expression of long-term caloric restriction in mouse heart. Exp. Gerontol. 2008, 43, 859–866, doi:10.1016/j.exger.2008.06.013.
[47]  Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326, doi:10.1016/j.cmet.2009.02.002.
[48]  Pass, G.J.; Becker, W.; Kluge, R.; Linnartz, K.; Plum, L.; Giesen, K.; Joost, H.G. Effect of hyperinsulinemia and type 2 diabetes-like hyperglycemia on expression of hepatic cytochrome p450 and glutathione s-transferase isoforms in a New Zealand obese-derived mouse backcross population. J. Pharmacol. Exp. Ther. 2002, 302, 442–450, doi:10.1124/jpet.102.033553.
[49]  Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492.
[50]  Yu, Z.; Zhai, G.; Singmann, P.; He, Y.; Xu, T.; Prehn, C.; Romisch-Margl, W.; Lattka, E.; Gieger, C.; Soranzo, N.; et al. Human serum metabolic profiles are age dependent. Aging Cell 2012, 11, 960–967, doi:10.1111/j.1474-9726.2012.00865.x.
[51]  Biesalski, H.K.; Nohr, D. New aspects in vitamin a metabolism: The role of retinyl esters as systemic and local sources for retinol in mucous epithelia. J. Nutr. 2004, 134, 3453S–3457S.
[52]  Zoeller, R.A.; Lake, A.C.; Nagan, N.; Gaposchkin, D.P.; Legner, M.A.; Lieberthal, W. Plasmalogens as endogenous antioxidants: Somatic cell mutants reveal the importance of the vinyl ether. Biochem. J. 1999, 338, 769–776, doi:10.1042/0264-6021:3380769.
[53]  Wallner, S.; Schmitz, G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem. Phys. Lipids 2011, 164, 573–589, doi:10.1016/j.chemphyslip.2011.06.008.
[54]  Scott, B.L.; Bazan, N.G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 1989, 86, 2903–2907, doi:10.1073/pnas.86.8.2903.
[55]  Pugh, T.D.; Klopp, R.G.; Weindruch, R. Controlling caloric consumption: Protocols for rodents and rhesus monkeys. Neurobiol. Aging 1999, 20, 157–165, doi:10.1016/S0197-4580(99)00043-3.
[56]  Lee, C.K.; Allison, D.B.; Brand, J.; Weindruch, R.; Prolla, T.A. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc. Natl. Acad. Sci. USA 2002, 99, 14988–14993, doi:10.1073/pnas.232308999.
[57]  Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple hypotheses testing under dependency. Ann. Stat. 2001, 29, 1165–1188, doi:10.1214/aos/1013699998.
[58]  Kim, S.Y.; Volsky, D.J. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 2005, 8, 144–156.
[59]  NCBI-GEO. Available online: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50789 (accessed on 28 June 2013).
[60]  Baur, P.; Martin, F.P.; Gruber, L.; Bosco, N.; Brahmbhatt, V.; Collino, S.; Guy, P.; Montoliu, I.; Rozman, J.; Klingenspor, M.; et al. Metabolic phenotyping of the Crohn’s disease-like IBD etiopathology in the TNF(DeltaARE/WT) mouse model. J. Proteome Res. 2011, 10, 5523–5535, doi:10.1021/pr2007973.
[61]  Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509.
[62]  Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122, doi:10.1021/ac0713510.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133