全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2013 

Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

DOI: 10.3390/membranes3030242

Keywords: biochemistry, polymer electrolytes, lithium polymer batteries

Full-Text   Cite this paper   Add to My Lib

Abstract:

I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries.

References

[1]  Boden, N.; Leng, S.A.; Ward, I.M. Ionic conductivity and diffusivity in polyethylene oxide/electrolyte solutions as models for polymer electrolytes. Solid State Ionics?1991, 45, 261–270, doi:10.1016/0167-2738(91)90160-D.
[2]  Ratner, M. Polymer Electrolyte Reviews; MacCallum, J.R., Vincent, C.A., Eds.; Elsevier: London, UK, 1987; Volume 1, p. 173.
[3]  Gray, F.M. Solid Polymer Electrolytes; VCH Pub.: New York, NY, USA, 1991.
[4]  Muller-Plathe, F. Permeation of polymers—A computational approach. Acta Polym.?1994, 45, 259–293, doi:10.1002/actp.1994.010450401.
[5]  Mckechnie, J.I.; Brown, D.; Clarke, J.H.R. Methods of generating dense relaxed amorphous polymer samples for use in dynamic simulations. Macromolecules?1992, 25, 1562–1567, doi:10.1021/ma00031a031.
[6]  Brown, D.; Clarke, J.H.R.; Okuda, M.; Yamazaki, T. Preparation of polymer melt samples for computer simulation studies. J. Chem. Phys.?1994, 100, 6011–6018, doi:10.1063/1.467111.
[7]  Neyertz, S.; Brown, D. Computer simulation study of the chain configurations in poly(ethylene oxide)-homolog melts. J. Chem. Phys.?1995, 102, 9725–9735, doi:10.1063/1.468791.
[8]  Catlow, C.R.A.; Mills, G.E. Computer simulation of ionically conducting polymers. Electrochim. Acta?1995, 40, 2057–2059, 2061–2062, doi:10.1016/0013-4686(95)00141-Z.
[9]  Neyertz, S.; Brown, D. Local structure and mobility of ions in polymer electrolytes: A molecular dynamics simulation study of the amorphous PEOxNal system. J. Chem. Phys.?1996, 104, 3797–3809, doi:10.1063/1.471033.
[10]  Annis, B.B.K.; Kim, M.-H.; Wignall, G.D.; Borodin, O.; Smith, G.D. Study of the influence of LiI on the chain conformations of poly(ethyleneoxide) in the melt by small-angle neutron scattering and molecular dynamics simulations. Macromolecules?2000, 33, 7544–7548, doi:10.1021/ma000452w.
[11]  Borodin, O.; Smith, G.D. Molecular dynamics simulations of poly(ethylene) oxide LiI melts 2. Dynamic properties. Macromolecules?2000, 33, 2273–2283, doi:10.1021/ma991429h.
[12]  Ennari, J.; Neelov, I.; Sundholm, F. Molecular dynamics simulation of the structure of PEO based solid polymer electrolytes. Polym. Guildf.?2000, 41, 4057–4063, doi:10.1016/S0032-3861(99)00642-4.
[13]  Ennari, J.; Neelov, I.; Sundholm, F. Simulation of a PEO based solid polyelectrolyte, comparison of the CMM and the Ewald summation method. Polym. Guildf.?2000, 41, 2149–2155, doi:10.1016/S0032-3861(99)00382-1.
[14]  Borodin, O.; Smith, G.D. Molecular dynamics simulations of poly(ethylene oxide)/LiI melts. 1. Structural and conformational properties. Macromolecules?1998, 31, 8396–8406, doi:10.1021/ma980838v.
[15]  Lin, B.; Boinske, P.T.; Halley, J.W. Molecular dynamics model of the amorphous regions of polyethylene oxide. J. Chem. Phys.?1996, 105, 1668–1681, doi:10.1063/1.472035.
[16]  Halley, J.W.; Duan, Y.; Nielsen, B.; Redfern, P.C.; Curtiss, L.A. Simulation of polyethylene oxide: Improved structure using better models for hydrogen and flexible walls. J. Chem. Phys.?2001, 115, 3957–3966, doi:10.1063/1.1386922.
[17]  Johnson, J.; Saboungi, M.-L.; Price, D.L.; Ansell, S.; Russell, T.P.; Halley, J.W.; Nielsen, B. Atomic structure of solid and liquid polyethylene oxide. J. Chem. Phys.?1998, 109, 7005–7010, doi:10.1063/1.477352.
[18]  Halley, J.W.; Duan, Y.; Curtiss, L.A.; Baboul, A.G. Lithium perchlorate ion pairing in a model of amorphous polyethylene oxide. J. Chem. Phys.?1999, 111, 3302–3308, doi:10.1063/1.479609.
[19]  Duan, Y.; Halley, J.W.; Curtiss, L.; Redfern, P. Mechanisms of lithium transport in amorphous polyethylene oxide. J. Chem. Phys.?2005, 122, 054702:1–054702:8.
[20]  Kato, M.; Warshel, A. Through the channel and around the channel: Validating and comparing microscopic approaches for the evaluation of free energy profiles for ion pentration through ion channels. J. Phys. Chem. B?2005, 109, 19516–19522, doi:10.1021/jp053208l.
[21]  Shin, J.H.; Henderson, W.A.; Passerini, S. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J. Electrochem. Soc.?2005, 152, A978–A983, doi:10.1149/1.1890701.
[22]  Henderson, W.A.; Passerini, S. Phase behavior of ionic liquid–LiX mixtures: Pyrrolidinium cations and TFSI? anions. Chem. Mater.?2004, 16, 2881–2885, doi:10.1021/cm049942j.
[23]  Castriota, M.; Caruso, T.; Agostino, R.G.; Cazzanelli, E.; Henderson, W.; Passerini, S. Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide and its mixture with LiN(SO2CF3)2. J. Phys. Chem. A?2005, 109, 92–96, doi:10.1021/jp046030w.
[24]  Shin, J.H.; Henderson, W.A.; Passerini, S. An elegant fix for polymer electrolytes. Electrochem. Solid State Lett.?2005, 8, A125–A127, doi:10.1149/1.1850387.
[25]  Wang, Y.; Li, B.; Ji, J.; Eyler, A.; Zhong, W.-H. A gum-like electrolyte: Safety of a solid, performance of a liquid. Adv. Energy Mater.?2013, doi:10.1002/aenm.201300495.
[26]  Ji, J.; Li, B.; Zhong, W.-H. An ultraelastic poly(ethylene oxide)/soy protein film with fully amorphous structure. Macromolecules?2012, 45, 602–606, doi:10.1021/ma202347v.
[27]  Gokel, G.; Daschbach, M.M. Coordination and transport of metal cations through phospholipid bilayer membranes by hydraphile channels. Coord. Chem. Rev.?2008, 252, 886–902, doi:10.1016/j.ccr.2007.07.026.
[28]  Hauser, H.; Shipley, G.G. Crystallization of Phospatidylserine Bilayers Induced by Lithium. J. Biol. Chem.?1981, 256, 11377–11380. 6271743
[29]  Perriman, A.W.; Brogan, A.P.S.; Colfen, H.; Tsoureas, N.; Owen, G.R.; Mann, S. Reversible dioxygen binding in solvent-free liquid myoglobin. Nat. Chem.?2010, 2, 622–626, doi:10.1038/nchem.700. 20651722
[30]  Morais-Cabral, J.H.; Zhou, Y.; MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature?2001, 414, 37–42, doi:10.1038/35102000.
[31]  Eriksson, U.K.; Fischer, G.; Friemann, R.; Enkavi, G.; Tajkhorshid, E.; Neutze1, R. Subangstrom resolution X-ray structure details aquaporin-water interactions. Science?2013, 340, 1346–1349, doi:10.1126/science.1234306. 23766328
[32]  Freites, J.A.; Tobias, D.J.; von Heijne, G.; White, S.H. Interface connections of a transmembrane voltage sensor. Proc. Natl. Acad. Sci. USA?2005, 102, 15059–15064, doi:10.1073/pnas.0507618102. 16217012
[33]  Jaud, S.; Tobias, D.J.; Falke, J.J.; White, S.H. Self-induced docking site of a deeply embedded peripheral membrane protein. Biophys. J.?, 2007 92, 517–524. 19254559
[34]  Bondar, A.N.; del Val, C.; White, S.H. Rhomboid protease dynamics and lipid interactions. Structure?2009, 17, 395–405, doi:10.1016/j.str.2008.12.017.
[35]  Krepkiy, D.; Mihailescu, M.; Freites, J.A.; Schow, E.V.; Worcester, D.L.; Gawrisch, K.; Tobias, D.J.; White, S.H.; Swartz, K.J. Structure and hydration of membranes embedded with voltage-sensing domains. Nature?2009, 462, 473–479, doi:10.1038/nature08542.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133