The application of low pressure membranes (microfiltration/ultrafiltration) has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM). This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW) and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation) and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.). Perspectives of further research are also discussed.
References
[1]
Qin, H.C.; Guo, J.T.; Li, W.Y.; Jiang, F.C.; Chen, J. Research progress on pretreatment of the effects on membrane fouling. Technol. Water Treat. 2011, 37, 1–5.
[2]
Wan, B.L.; Wang, H.J. Theories and Applications of New Technology in Water Treatment; Chemical Industry Press: Beijing, China, 2006.
[3]
Dong, B.Z.; Cao, D.W.; Chen, Y. Membrane Advanced Treatment Technology of Drinking Water; Chemical Industry Press: Beijing, China, 2006.
[4]
Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.L.; Han, Z.S.; Li, G.B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8, doi:10.1016/j.desal.2011.01.051.
[5]
Lee, N.; Amy, G.; Croue, J.P.; Buisson, H. Morphological analyses of natural organic matter (NOM) fouling of low-pressure membranes (MF/UF). J. Membr. Sci. 2005, 261, 7–16, doi:10.1016/j.memsci.2005.02.039.
[6]
Kaiya, Y.; Itoh, Y.; Fujita, K.; Takizawa, S. Study on fouling materials in the membrane treatment process for potable water. Desalination 1996, 106, 71–77.
[7]
Amy, G. Fundamental understanding of organic matter fouling of membranes. Desalination 2008, 231, 44–51, doi:10.1016/j.desal.2007.11.037.
[8]
Lim, S.M.; Chiang, K.; Amal, R.; Fabris, R.; Chow, C.; Drikas, M. A study on the removal of humic acid using advanced oxidation processes. Sep. Sci. Technol. 2007, 42, 1391–1404, doi:10.1080/01496390701289799.
[9]
Buchanan, W.; Roddick, F.; Porter, N.; Drikas, M. Fractionation of UV and VUV pretreated natural organic matter from drinking water. Environ. Sci. Technol. 2005, 39, 4647–4654, doi:10.1021/es048489+.
[10]
Carroll, T.; King, S.; Gray, S.R.; Bolto, B.A.; Booker, N.A. The fouling of microfiltration membranes by NOM after coagulation treatment. Water Res. 2000, 34, 2861–2868, doi:10.1016/S0043-1354(00)00051-8.
[11]
Fan, L.H.; Harris, J.L.; Roddick, F.A.; Booker, N.A. Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res. 2001, 35, 4455–4463, doi:10.1016/S0043-1354(01)00183-X.
[12]
Gray, S.R.; Ritchie, C.B.; Tran, T.; Bolto, B.A. Effect of NOM characteristics and membrane type on microfiltration performance. Water Res. 2007, 41, 3833–3841, doi:10.1016/j.watres.2007.06.020.
[13]
Chen, Y.; Dong, B.Z.; Gao, N.Y.; Fan, J.C. Effect of coagulation pretreatment on fouling of an ultrafiltration membrane. Desalination 2007, 204, 181–188, doi:10.1016/j.desal.2006.04.029.
[14]
Lankes, U.; Luedemann, H.D.; Frimmel, F.H. Search for basic relationships between “molecular size” and “chemical structure” of aquatic natural organic matter—Answers from C-13 and N-15 CPMAS NMR spectroscopy. Water Res. 2008, 42, 1051–1060, doi:10.1016/j.watres.2007.09.028.
[15]
Lee, N.; Amy, G.; Lozier, J. Understanding natural organic matter fouling in low-pressure membrane filtration. Desalination 2005, 178, 85–93, doi:10.1016/j.desal.2004.11.030.
[16]
Weis, A.; Bird, M.R.; Nystrom, M.; Wright, C. The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor. Desalination 2005, 175, 73–85, doi:10.1016/j.desal.2004.09.024.
[17]
Lee, N.H.; Amy, G.; Croue, J.P.; Buisson, H. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res. 2004, 38, 4511–4523, doi:10.1016/j.watres.2004.08.013.
[18]
Li, C.W.; Chen, Y.S. Fouling of UF membrane by humic substance: Effects of molecular weight and powder-activated carbon (PAC) pre-treatment. Desalination 2004, 170, 59–67, doi:10.1016/j.desal.2004.03.015.
[19]
Yoon, Y.M.; Amy, G.; Cho, J.W.; Her, N. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 2005, 173, 209–221, doi:10.1016/j.desal.2004.06.213.
[20]
Yamamura, H.; Kimura, K.; Watanabe, Y. Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment. Environ. Sci. Technol. 2007, 41, 6789–6794, doi:10.1021/es0629054.
[21]
Cho, J.W.; Amy, G.; Pellegrino, J. Membrane filtration of natural organic matter: Comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes. Desalination 2000, 127, 283–298, doi:10.1016/S0011-9164(00)00017-5.
[22]
Liang, H.; Gong, W.; Chen, J.; Li, G. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination 2008, 220, 267–272, doi:10.1016/j.desal.2007.01.033.
[23]
Wang, J.; Wang, X.C. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism. J. Environ. Sci. China 2006, 18, 880–884, doi:10.1016/S1001-0742(06)60008-9.
[24]
Kimura, K.; Hane, Y.; Watanabe, Y. Effect of pre-coagulation on mitigatingirreversible fouling during ultrafiltration of a surface water. Water Sci Technol 2005, 51, 93–100.
[25]
Dong, B.Z.; Feng, J.; Chen, Y.; Gao, N.Y. Effect of Properties of organics on ultrafiltration membrane flux. J. Tongji Univ. 2007, 35, 356–360.
[26]
Suzuki, T.; Watanabe, Y.; Ozawa, G. Performance of a hybrid MF membrane system combining activated carbon adsorption and biological oxidation. Water Sci. Technol. Water Supply 2001, 1, 253–259.
[27]
Sun, D.D.; Zhang, Q.X. Study on the pretreatment of UF membrane and the cleaning in processing domestic wastewater. Chem. Equip. Technol. 2003, 24, 10–13.
[28]
Gai, X.J.; Kim, H.S. The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment. Desalination 2008, 225, 288–300, doi:10.1016/j.desal.2007.07.009.
[29]
Ma, C.; Yu, S.L.; Shi, W.X.; Tian, W.D.; Heijman, S.G.J.; Rietveld, L.C. High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature. Bioresour. Technol. 2012, 113, 136–142, doi:10.1016/j.biortech.2012.02.007.
[30]
Lin, C.F.; Liu, S.H.; Hao, O.J. Effect of functional groups of humic substances on UF performance. Water Res. 2001, 35, 2395–2402, doi:10.1016/S0043-1354(00)00525-X.
[31]
Da Silva, F.V.; Yamaguchi, N.U.; Lovato, G.A.; da Silva, F.A.; Reis, M.H.M.; de Amorim, M.; Tavares, C.R.G.; Bergamasco, R. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality. Environ. Technol. 2012, 33, 711–716, doi:10.1080/09593330.2011.589133.
[32]
Park, D.; Wang, J.; Klibanov, A.M. One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal. Biotechnol. Progr. 2006, 22, 584–589, doi:10.1021/bp0503383.
[33]
Milovic, N.M.; Wang, J.; Lewis, K.; Klibanov, A.M. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol. Bioeng. 2005, 90, 715–722, doi:10.1002/bit.20454.
[34]
De Velasquez, M.T.O.; Monje-Ramirez, I.; Paredes, J.F.M. Effect of ozone in UF-membrane flux and dissolved organic matter of secondary effluent. Ozone-Sci. Eng. 2013, 35, 208–216, doi:10.1080/01919512.2013.771940.
[35]
Wang, X.; Wang, L.; Liu, Y.; Duan, W. Ozonation pretreatment for ultrafiltration of the secondary effluent. J. Membr. Sci. 2007, 287, 187–191, doi:10.1016/j.memsci.2006.10.016.
[36]
You, S.H.; Tseng, D.H.; Hsu, W.C. Effect and mechanism of ultrafiltration membrane fouling removal by ozonation. Desalination 2007, 202, 224–230, doi:10.1016/j.desal.2005.12.058.
[37]
Oh, B.S.; Jang, H.Y.; Hwang, T.M.; Kang, J.W. Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process. J. Membr. Sci. 2007, 289, 178–186, doi:10.1016/j.memsci.2006.11.052.
[38]
Kabsch-Korbutowicz, M.; Bilyk, A.; Molczan, M. The effect of feed water pretreatment on ultrafiltration membrane performance. Polish J. Environ. Stud. 2006, 15, 719–725.
[39]
Huang, H.O.; Cho, H.H.; Schwab, K.J.; Jacangelo, J.G. Effects of magnetic ion exchange pretreatment on low pressure membrane filtration of natural surface water. Water Res. 2012, 46, 5483–5490, doi:10.1016/j.watres.2012.07.003.
[40]
Nagaoka, H.; Yamanishi, S.; Miya, A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system. Water Sci. Technol. 1998, 38, 497–504, doi:10.1016/S0273-1223(98)00550-2.
[41]
Khan, M.M.T.; Takizawa, S.; Lewandowski, Z.; Rahman, M.H.; Komatsu, K.; Nelson, S.E.; Kurisu, F.; Camper, A.K.; Katayama, H.; Ohgaki, S. Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor. Water Res. 2013, 47, 747–757, doi:10.1016/j.watres.2012.10.048.
[42]
Jeong, S.; Naidu, G.; Vigneswaran, S. Submerged membrane adsorption bioreactor as a pretreatment in seawater desalination for biofouling control. Bioresour. Technol. 2013, 141, 57–64, doi:10.1016/j.biortech.2013.01.021.
[43]
Suarez, J.; Villa, J.; Salgado, B. Experience with integrated ultrafiltration/reverse osmosis systems in industrial applications in Spain. Desalin. Water Treat. 2013, 51, 423–431, doi:10.1080/19443994.2012.699344.
[44]
Song, Y.F.; Su, B.W.; Gao, X.L.; Gao, C.J. The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system. Desalination 2012, 296, 30–36, doi:10.1016/j.desal.2012.03.024.
[45]
Yu, H.; Li, J.; Wang, Y.; Yang, C. Research on reliability of ultrafiltration in integrated MBR-UF-RO system for municipal wastewater reuse in power plant. Technol. Water Treat. 2011, 37, 75.
[46]
Tian, J.Y.; Ernst, M.; Cui, F.Y.; Jekel, M. KMnO4 pre-oxidation combined with FeCl3 coagulation for UF membrane fouling control. Desalination 2013, 320, 40–48, doi:10.1016/j.desal.2013.04.017.
[47]
Wang, J.H.; Qing, Y.; Qing, C. Surface electrokinetic behavior of PVDF hollow fiber ultrafiltration membrane modified by low-temperature plasma method. Environ. Sci. Manag. 2009, 34, 54–57.
[48]
Kim, E.S.; Kim, Y.J.; Yu, Q.S.; Deng, B.L. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J. Membr. Sci. 2009, 344, 71–81, doi:10.1016/j.memsci.2009.07.036.
[49]
Yang, N.Z.; Wang, Y.T.; Guo, M.Y.; Zhang, A.H. PAN ultrafiltration membrane surface modification by low temperature plasma treatment with oxygen. J. Northwest Inst. Text. Sci. Technol. 2000, 14, 314–317.
[50]
Shim, J.K.; Na, H.S.; Lee, Y.M.; Huh, H.; Nho, Y.C. Surface modification of polypropylene membranes by gamma-ray induced graft copolymerization and their solute permeation characteristics. J. Membr. Sci. 2001, 190, 215–226, doi:10.1016/S0376-7388(01)00445-8.
[51]
Higuchi, A.; Shirano, K.; Harashima, M.; Yoon, B.O.; Hara, M.; Hattori, M.; Imamura, K. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 2002, 23, 2659–2666, doi:10.1016/S0142-9612(01)00406-9.
[52]
Higuchi, A.; Sugiyama, K.; Yoon, B.O.; Sakurai, M.; Hara, M.; Sumita, M.; Sugawara, S.; Shirai, T. Serum protein adsorption and platelet adhesion on pluronic (TM)-adsorbed polysulfone membranes. Biomaterials 2003, 24, 3235–3245, doi:10.1016/S0142-9612(03)00186-8.
Hyun, J.; Jang, H.; Kim, K.; Na, K.; Tak, T. Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains. J. Membr. Sci. 2006, 282, 52–59, doi:10.1016/j.memsci.2006.05.008.
Xing, D.M.; Wu, G.Y.; Hu, J.J. Study on the modified PVC UF membrane (II)—Study on the performance of the blend modified membrane. Membr. Sci. Technol. 1996, 16, 45–50.
[61]
Cherdron, H.; Haubs, M.; Herold, F.; Schneller, A.; Herrmannschonherr, O.; Wagener, R. Miscible blends of polybenzimidazole and polyaramides with polyvinylpyrrolidone. J. Appl. Polym. Sci. 1994, 53, 507–512, doi:10.1002/app.1994.070530505.
[62]
Damodar, R.A.; You, S.J.; Chou, H.H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 2009, 172, 1321–1328, doi:10.1016/j.jhazmat.2009.07.139.
[63]
Li, J.H.; Xu, Y.Y.; Zhu, L.P.; Wang, J.H.; Du, C.H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. 2009, 326, 659–666, doi:10.1016/j.memsci.2008.10.049.
[64]
Oh, S.J.; Kim, N.; Lee, Y.T. Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J. Membr. Sci. 2009, 345, 13–20, doi:10.1016/j.memsci.2009.08.003.
[65]
Yu, L.Y.; Shen, H.M.; Xu, Z.L. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J. Appl. Polym. Sci. 2009, 113, 1763–1772, doi:10.1002/app.29886.