Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al 2O 3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N 2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7?MPa). The results showed that higher pressure resulted in higher Na + rejection and permeate flux. The zeolite membrane achieved a good rejection of Na + (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L ?1 at an applied pressure of 7?MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000?mg·L ?1) and at 90?°C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na + rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection.
References
[1]
Chesters, S.P.; Pena, N.; Gallego, S.; Fazel, M.; Armstrong, M.W.; del Vigo, F. Results from 99 Sea Water Reverse Osmosis (SWRO) Membrane Autopsies. In Proceedings of the IDA World Congress, Perth, Western Australia, Australia, 4–9 September 2011.
[2]
NRC (National Research Council). Review of the Desalination and Water Purification Technology Roadmap; The National Academic Press: Washington, DC, USA, 2004.
[3]
Cho, C.H.; Oh, K.Y.; Kim, S.K.; Yeo, J.G.; Sharma, P. Pervaporative seawater desalination using naa zeolite membrane: Mechanisms of high water flux and high salt rejection. J. Membr. Sci. 2011, 371, 226–238, doi:10.1016/j.memsci.2011.01.049.
[4]
Samuel de Lint, W.B.; Zivkovic, T.; Benes, N.E.; Bouwmeester, H.J.M.; Blank, D.H.A. Electrolyte retention of supported Bi-layered nanofiltration membranes. J. Membr. Sci. 2006, 277, 18–27, doi:10.1016/j.memsci.2005.10.004.
[5]
Xu, R.; Wang, J.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Development of robust organosilica membranes for reverse osmosis. Langmuir 2011, 27, 13996–13999, doi:10.1021/la203711u.
[6]
Li, L.X.; Dong, J.H.; Nenoff, T.M.; Lee, R. Desalination by reverse osmosis using mfi zeolite membranes. J. Membr. Sci. 2004, 243, 401–404, doi:10.1016/j.memsci.2004.06.045.
[7]
Li, L.X.; Dong, J.H.; Nenoff, T.M.; Lee, R. Reverse osmosis of ionic aqueous solutions on a mfi zeolite membrane. Desalination 2004, 170, 309–316, doi:10.1016/j.desal.2004.02.102.
[8]
Li, L.X.; Dong, J.H.; Nenoff, T.M. Transport of water and alkali metal ions through mfi zeolite membranes during reverse osmosis. Sep. Purif. Technol. 2007, 53, 42–48.
[9]
Duke, M.; O’Brien-Abraham, J.; Milne, N.; Zhu, B.; Lin, Y.S.; Diniz da Costa, J.C. Seawater desalination performance of mfi type membranes made by secondary growth. Sep. Purif. Technol. 2009, 68, 343–350, doi:10.1016/j.seppur.2009.06.003.
[10]
Kazemimoghadam, M.; Mohammadi, T. Synthesis of MFI zeolite membranes for water desalination. Desalination 2007, 206, 547–553, doi:10.1016/j.desal.2006.04.063.
[11]
Lin, J.; Murad, S. A computer simulation study of the separation of aqueous solutions using thin zeolite membranes. Mol. Phys. 2001, 99, 1175–1181, doi:10.1080/00268970110041236.
[12]
Deng, Y.; Deng, C.; Qi, D.; Liu, C.; Liu, J.; Zhang, X.; Zhao, D. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv. Mater. 2009, 21, 1377–1382, doi:10.1002/adma.200801766.
[13]
Doocey, D.J.; Sharratt, P.N.; Cundy, C.S.; Plaisted, R.J. Zeolite-mediated advanced oxidation of model chlorinated phenolic aqueous waste: Part 2: Solid phase catalysis. Process. Saf. Environ. Prot. 2004, 82, 359–364, doi:10.1205/psep.82.5.359.44192.
[14]
Wang, W.; Zhou, M.; Mao, Q.; Yue, J.; Wang, X. Novel nay zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous fenton catalyst. Catal. Commun. 2010, 11, 937–941, doi:10.1016/j.catcom.2010.04.004.
[15]
Coronas, J. Present and future synthesis challenges for zeolites. Chem. Eng. J. 2010, 156, 236–242, doi:10.1016/j.cej.2009.11.006.
[16]
Weller, M.T. Inorganic Materials; Oxford University Press Inc.: New York, NY, USA, 1994; pp. 71–81.
[17]
Breck, D.W. Zeolite Molecular Sieves—Structure, Chemistry, and Use; Wiley: New York, NY, USA, 1974.
[18]
Kaduk, J.A.; Faber, J. Crystal structure of zeolite Y as a function of ion exchange. Rigaku J. 1995, 12, 14–34.
Baerlocher, C.; McCusker, L.B. Database of zeolite structures. Available online: http://www.Iza-structure.org/databases/ (accessed on 11 July 2013).
[21]
Nightingale, E.R., Jr. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387, doi:10.1021/j150579a011.
[22]
Cui, J.; Zhang, X.; Liu, H.; Liu, S.; Yeung, K.L. Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. J. Membr. Sci. 2008, 325, 420–426, doi:10.1016/j.memsci.2008.08.015.
[23]
Malekpour, A.; Millani, M.R.; Kheirkhah, M. Synthesis and characterization of a NAA zeolite membrane and its applications for desalination of radioactive solutions. Desalination 2008, 225, 199–208, doi:10.1016/j.desal.2007.02.096.
[24]
Li, L.; Liu, N.; McPherson, B.; Lee, R. Influence of counter ions on the reverse osmosis through MFI zeolite membranes: Implications for produced water desalination. Desalination 2008, 228, 217–225, doi:10.1016/j.desal.2007.10.010.
[25]
Liu, N.; Li, L.; McPherson, B.; Lee, R. Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes. J. Membr. Sci. 2008, 325, 357–361, doi:10.1016/j.memsci.2008.07.056.
[26]
Lee, J.S.; Kim, J.H.; Lee, Y.J.; Jeong, N.C.; Yoon, K.B. Manual assembly of microcrystal monolayers on substrates. Angew. Chem. Int. Ed. Engl. 2007, 46, 3087–3090, doi:10.1002/anie.200604367.
[27]
Yoo, W.C.; Stoeger, J.A.; Lee, P.-S.; Tsapatsis, M.; Stein, A. High-performance randomly oriented zeolite membranes using brittle seeds and rapid thermal processing. Angew. Chem. Int. Ed. Engl. 2010, 49, 8699–8703.
[28]
Osmosis equation. Available online: http://www.chemteam.info/solutions/osmosis-equation.html (accessed on 30 May 2013).
[29]
Fyfe, C.A.; Strobl, H.; Kokotailo, G.T.; Kennedy, G.J.; Barlow, G.E. Ultra-high-resolution/sup 29/Si solid-state mas nmr investigation of sorbate and temperature-induced changes in the lattice structure of zeolite ZSM-5. J. Am. Chem. Soc. 1988, 110, 3373–3380, doi:10.1021/ja00219a005.
[30]
Chaplin, M. Water structure and science: Ion hydration and aqueous solutions of salts. Available online: http://www.lsbu.ac.uk/water/ions.html (accessed on 21 February 2013).
[31]
Drobek, M.; Yacou, C.; Motuzas, J.; Julbe, A.; Ding, L.; Diniz da Costa, J.C. Long term pervaporation desalination of tubular mfi zeolite membranes. J. Membr. Sci. 2012, 415–416, 816–823.
[32]
Zhu, B.; Zou, L.; Doherty, C.M.; Hill, A.J.; Lin, Y.S.; Hu, X.R.; Wang, H.T.; Duke, M. Investigation of the effects of ion and water interaction on structure and chemistry of silicalite MFI type zeolite for its potential use as a seawater desalination membrane. J. Mater. Chem. 2010, 20, 4675–4683.
[33]
Zhu, B.; Doherty, C.M.; Hu, X.; Hill, A.J.; Zou, L.; Lin, Y.S.; Duke, M. Designing hierarchical porous features of ZSM-5 zeolites via Si/Al ratio and their dynamic behavior in seawater ion complexes. Microporous Mesoporous Mater. 2013, 173, 78–85, doi:10.1016/j.micromeso.2013.02.005.
[34]
Kerber, S.J.; Barr, T.L.; Mann, G.P.; Brantley, W.A.; Papazoglou, E.; Mitchell, J.C. The complementary nature of X-ray photoelectron spectroscopy and angle-resolved X-ray diffraction. Part I: Background and theory. J. Mater. Eng. Perform. 1998, 7, 329–333.
[35]
X-ray photoelectron spectroscopy. Available online: http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy (accessed on 11 June 2013).
[36]
Electron spectroscopy for chemical analysis (ESCA) aka X-ray photoelectron spectroscopy (XPS). Available online: http://www.foothills-analytical.com/ESCA.html (accessed on 11 June 2013).