Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of “sense to act”, stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.
References
[1]
Gugliuzza, A. Smart Membranes and Sensors; John Wiley & Sons-Scrivener Publishing LLC: Salem, MA, USA, 2014. in press.
Gugliuzza, A.; Fabiani, R.; Garavaglia, M.G.; Spisso, A.; Drioli, E. Study of the surface character as responsible for controlling interfacial forces at membrane-feed interface. J. Colloid Interface Sci. 2006, 303, 388–403, doi:10.1016/j.jcis.2006.07.017.
[6]
Gugliuzza, A.; de Luca, G.; Tocci, E.; de Lorenzo, L.; Drioli, E. Intermolecular interactions as controlling factor for water sorption into polymer membranes. J. Phys. Chem.B 2007, 111, 8868–8878, doi:10.1021/jp071776q.
[7]
De Luca, G.; Gugliuzza, A.; Drioli, E. Competitive host-host, guest-host interactions in modified polymer membranes: A Density Functional Theory investigation on the availability of polymer polar moieties. J. Phys. Chem. B 2009, 113, 5473–5477, doi:10.1021/jp900228z.
[8]
Baker, R. Membrane Technology and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2012; pp. 1–577.
[9]
Strathmann, H. Membrane separation processes. J. Membr. Sci. 1981, 9, 121–189, doi:10.1016/S0376-7388(00)85121-2.
[10]
Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin Hydrogel Films for Optical Biosensor Applications. Membranes 2012, 2, 40–69, doi:10.3390/membranes2010040.
[11]
Morones-Ramírez, J.R. Bioinspired synthesis of optically and thermally responsive nanoporous membranes. NPG Asia Mater. 2013, 5, 1–9.
[12]
Bemanian, M.R.; Mahdavinejad, M.; Karam, A.; Ramezani, S. The Role of Combined-Scale Smart Structures in Multifunctional Spaces Development. Int. J. Appl. Phys. Math. 2012, 2, 5–7, doi:10.5923/j.am.20120202.02.
[13]
Nielsen, C.H. Biomimetic membranes for sensor and separation applications. Anal. Bioanal. Chem. 2009, 395, 697–718, doi:10.1007/s00216-009-2960-0.
Gugliuzza, A.; Drioli, E. New performance of hydrophobic fluorinated porous membranes exhibiting particulate-like morphology. Desalination 2009, 240, 14–20, doi:10.1016/j.desal.2008.07.007.
[16]
Su, Y.; Zheng, L.; Li, C.; Jiang, Z. Smart Zwitterionic Membranes with On/Off Behavior for Protein Transport. J. Phys. Chem. B 2008, 112, 11923–11928, doi:10.1021/jp804422t.
Trotta, F.; Biasizzo, M.; Caldera, F. Molecularly Imprinted Membranes. Membranes 2012, 2, 440–477, doi:10.3390/membranes2030440.
[19]
Chu, L.; Xie, R.; Ju, X. Stimuli-responsive Membranes: Smart Tools for Controllable Mass-transfer and Separation Processes. Chin. J. Chem. Eng. 2011, 19, 891–903, doi:10.1016/S1004-9541(11)60070-0.
[20]
Speranza, V.; Trotta, F.; Drioli, E.; Gugliuzza, A. High-definition polymeric membranes: Construction of 3D lithographed channel arrays through controlling natural building blocks dynamics. ACS Appl. Mater. Interfaces 2010, 2, 459–466, doi:10.1021/am900701r.
[21]
Gugliuzza, A.; Aceto, M.C.; Macedonio, F.; Drioli, E. Water droplets as template for next generation self-assembled poly-(etheretherketone) with Cardo membranes. J. Phys. Chem. B 2008, 112, 10483–10496, doi:10.1021/jp802130u.
[22]
Hsu, S.H.; Sigmund, W.M. Artificial Hairy Surfaces with a Nearly Perfect Hydrophobic Response. Langmuir 2010, 26, 1504–1506, doi:10.1021/la903813g.
[23]
Diaconu, G.; Gugliuzza, A.; Sch?fer, T. Characterization of PAA/PDDA-Based Stimuli Responsive Membranes. Procedia Eng. 2012, 44, 1260–1261, doi:10.1016/j.proeng.2012.08.747.
[24]
Gugliuzza, A.; Drioli, E. A Review on Membrane Engineering for Innovation in Wearable Fabrics and Protective Textiles. J. Membr. Sci. 2013. in press, doi:10.1016/j.memsci.2013.07.014.