全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2013 

Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination

DOI: 10.3390/membranes3030136

Keywords: mesoporous, silica, membrane, sol-gel, desalination, stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work shows the preparation of silica membranes by a two-step sol-gel method using tetraethyl orthosilicate in ethanolic solution by employing nitric acid and ammonia as co-catalysts. The sols prepared in pH 6 resulted in the lowest concentration of silanol (Si–OH) species to improve hydrostability and the optimized conditions for film coating. The membrane was tested to desalinate 0.3–15 wt % synthetic sodium chloride (NaCl) solutions at a feed temperature of 22 °C followed by long term membrane performance of up to 250 h in 3.5 wt % NaCl solution. Results show that the water flux (and salt rejection) decrease with increasing salt concentration delivering an average value of 9.5 kg m – 2 h –1 (99.6%) and 1.55 kg m – 2 h –1 (89.2%) from the 0.3 and 15 wt % saline feed solutions, respectively. Furthermore, the permeate salt concentration was measured to be less than 600 ppm for testing conditions up to 5 wt % saline feed solutions, achieving below the recommended standard for potable water. Long term stability shows that the membrane performance in water flux was stable for up to 150 h, and slightly reduced from thereon, possibly due to the blockage of large hydrated ions in the micropore constrictions of the silica matrix. However, the integrity of the silica matrix was not affected by the long term testing as excellent salt rejection of >99% was maintained for over 250 h.

References

[1]  World Health Organization; United Nations International Children’s Fund. Progress on sanitation and drinking-water in joint monitoring programme for water supply and sanitation. 2010. Available online: http://www.who.int/water_sanitation_health/monitoring/en/ (aceessed on 5 July 2013).
[2]  Foerch, W.; Althoff, I.; Foerch, G. Water demand. In Encyclopedia of Environment and Society, 1st ed.; Robbins, P., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2007; Volume 24, pp. 1922, 2736.
[3]  Global Water Intelligence Global Water Summit. Available online: http://www.globalwaterintel.com/archive/10/2/market-insight/2009-global-water-awardsmembrane-desalination-plant-year.html (accessed on 5 July 2013).
[4]  Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717, doi:10.1126/science.1200488.
[5]  Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination-development to date and future potential. J. Membr. Sci. 2011, 370, 1–22, doi:10.1016/j.memsci.2010.12.036.
[6]  Pina, M.P.; Mallada, R.; Arruebo, M.; Urbiztondo, M.; Navascués, N.; de la Iglesia, O.; Santamaria, J. Zeolite films and membranes. Emerging applications. Microporous Mesoporous Mater. 2011, 144, 19–27, doi:10.1016/j.micromeso.2010.12.003.
[7]  Swenson, P.; Tanchuk, B.; Gupta, A.; An, W.; Kuznicki, S.M. Pervaporative desalination of water using natural zeolite membranes. Desalination 2012, 285, 68–72, doi:10.1016/j.desal.2011.09.035.
[8]  Drobek, M.; Motuzas, J.; Julbe, A.; Ding, L.; Yacou, C.; Diniz da Costa, J.C. Long term pervaporation desalination of tubular mfi zeolite membranes. J. Membr. Sci. 2012, 415–416, 816–823, doi:10.1016/j.memsci.2012.05.074.
[9]  Duke, M.C.; Mee, S.; Diniz da Costa, J.C. Performance of porous inorganic membranes in non-osmotic desalination. Water Res. 2007, 41, 3998–4004, doi:10.1016/j.watres.2007.05.028.
[10]  Elma, M.; Yacou, C.; Wang, D.K.; Smart, S.; Diniz da Costa, J.C. Microporous silica based membranes for desalination. Water 2012, 4, 629–649, doi:10.3390/w4030629.
[11]  Lin, C.X.C.; Ding, L.P.; Smart, S.; Diniz da Costa, J.C. Cobalt oxide silica membranes for desalination. J. Colloid Interface Sci. 2012, 368, 70–76, doi:10.1016/j.jcis.2011.10.041.
[12]  Lin, J.; Murad, S. A computer simulation study of the separation of aqueous solutions using thin zeolite membranes. Mol. Phys. 2001, 99, 1175–1181, doi:10.1080/00268970110041236.
[13]  Wijaya, S.; Duke, M.C.; Diniz da Costa, J.C. Carbonised template silica membranes for desalination. Desalination 2009, 236, 291–298, doi:10.1016/j.desal.2007.10.079.
[14]  Battersby, S.; Smart, S.; Ladewig, B.; Liu, S.; Duke, M.C.; Rudolph, V.; Diniz da Costa, J.C. Hydrothermal stability of cobalt silica membranes in a water gas shift membrane reactor. Sep. Purif. Technol. 2009, 66, 299–305, doi:10.1016/j.seppur.2008.12.020.
[15]  Gu, Y.; Oyama, S.T. Permeation properties and hydrothermal stability of silica-titania membranes supported on porous alumina substrates. J. Membr. Sci. 2009, 345, 267–275, doi:10.1016/j.memsci.2009.09.009.
[16]  Igi, R.; Yoshioka, T.; Ikuhara, Y.H.; Iwamoto, Y.; Tsuru, T. Characterization of co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J. Am. Ceram. Soc. 2008, 91, 2975–2981, doi:10.1111/j.1551-2916.2008.02563.x.
[17]  Miller, C.R.; Wang, D.K.; Smart, S.; Diniz da Costa, J.C. Reversible Redox Effect on Gas Permeation of Cobalt Doped Ethoxy Polysiloxane (ES40) Membranes. Sci. Rep. 2013, 3, 1648:1–1648:6.
[18]  Yacou, C.; Smart, S.; Diniz da Costa, J.C. Long term performance cobalt oxide silica membrane module for high temperature H2 separation. Energy Environ. Sci. 2012, 5, 5820–5832, doi:10.1039/c2ee03247c.
[19]  Chua, Y.T.; Lin, C.X.C.; Kleitz, F.; Zhao, X.S.; Smart, S. Nanoporous organosilica membrane for water desalination. Chem. Commun. 2013, 49, 4534–4536, doi:10.1039/c3cc40434j.
[20]  Castricum, H.L.; Sah, A.; Kreiter, R.; Blank, D.H.A.; Vente, J.F.; Ten Elshof, J.E. Hybrid ceramic nanosieves: Stabilizing nanopores with organic links. Chem. Commun. 2008, 1103–1105.
[21]  Xu, R.; Wang, J.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Development of robust organosilica membranes for reverse osmosis. Langmuir 2011, 27, 13996–13999, doi:10.1021/la203711u.
[22]  Duke, M.C.; Diniz da Costa, J.C.; Do, D.D.; Gray, P.G.; Lu, G.Q. Hydrothermally robust molecular sieve silica for wet gas separation. Adv. Funct. Mater. 2006, 16, 1215–1220, doi:10.1002/adfm.200500456.
[23]  Tsuru, T.; Igi, R.; Kanezashi, M.; Yoshioka, T.; Fujisaki, S.; Iwamoto, Y. Permeation properties of hydrogen and water vapor through porous silica membranes at high temperatures. AIChE J. 2011, 57, 618–629, doi:10.1002/aic.12298.
[24]  International Organization for Standardization. Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption: Part 3; International Organization for Standardization: Geneva, Switzerland, 2007.
[25]  Tran, T.H.Y.; Schut, H.; Haije, W.G.; Schoonman, J. Structural characterization and porosity analysis in self-supported porous alumina-silica thin films. Thin Solid Films 2011, 520, 30–34, doi:10.1016/j.tsf.2011.06.027.
[26]  Evans, R. Nature of the iquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 1979, 28, 143–200, doi:10.1080/00018737900101365.
[27]  Lastoskie, C.; Gubbins, K.E.; Quirke, N. Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. 1993, 97, 4786–4796.
[28]  Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128, doi:10.1107/S0021889810030499.
[29]  Bertoluzza, A.; Fagnano, C.; Antonietta Morelli, M.; Gottardi, V.; Guglielmi, M. Raman and infrared spectra on silica gel evolving toward glass. J. Non-Cryst. Solids 1982, 48, 117–128, doi:10.1016/0022-3093(82)90250-2.
[30]  Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st ed. ed.; Academic Press: Boston, MA, USA, 1990; p. 908.
[31]  Brinker, C.J.; Keefer, K.D.; Schaefer, D.W.; Ashley, C.S. Sol-gel transition in simple silicates. J. Non-Cryst. Solids 1982, 48, 47–64, doi:10.1016/0022-3093(82)90245-9.
[32]  Brinker, C.J.; Keefer, K.D.; Schaefer, D.W.; Assink, R.A.; Kay, B.D.; Ashley, C.S. Sol-gel transition in simple silicates II. J. Non-Cryst. Solids 1984, 63, 45–59, doi:10.1016/0022-3093(84)90385-5.
[33]  Gao, X.; Diniz da Costa, J.C.; Bhatia, S.K. The transport of gases in a supported mesoporous silica membrane. J. Membr. Sci. 2013, 438, 90–104, doi:10.1016/j.memsci.2013.03.042.
[34]  Gao, X.; Bonilla, M.R.; Diniz da Costa, J.C.; Bhatia, S.K. The transport of gases in a mesoporous γ-alumina supported membrane. J. Membr. Sci. 2013, 428, 357–370, doi:10.1016/j.memsci.2012.10.015.
[35]  Huang, P.; Xu, N.; Shi, J.; Lin, Y.S. Characterization of asymmetric ceramic membranes by modified permporometry. J. Membr. Sci. 1996, 116, 301–305, doi:10.1016/0376-7388(96)00097-X.
[36]  Cheraitia, A.; Ayral, A.; Julbe, A.; Rouessac, V.; Satha, H. Synthesis and characterization of microporous silica-alumina membranes. J. Porous Mater. 2010, 17, 259–263, doi:10.1007/s10934-009-9300-9.
[37]  Uhlmann, D.; Smart, S.; Diniz da Costa, J.C. High temperature steam investigation of cobalt oxide silica membranes for gas separation. Sep. Purif. Technol. 2010, 76, 171–178, doi:10.1016/j.seppur.2010.10.004.
[38]  Ladewig, B.P.; Tan, Y.H.; Lin, C.X.C.; Ladewig, K.; Diniz da Costa, J.C.; Smart, S. Preparation, characterization and performance of templated silica membranes in non-osmotic desalination. Materials 2011, 4, 845–856.
[39]  Li, L.; Dong, J.; Nenoff, T.M.; Lee, R. Desalination by reverse osmosis using mfi zeolite membranes. J. Membr. Sci. 2004, 243, 401–404, doi:10.1016/j.memsci.2004.06.045.
[40]  Li, L.; Liu, N.; McPherson, B.; Lee, R. Enhanced water permeation of reverse osmosis through MFI-type zeolite membranes with high aluminum contents. Ind. Eng. Chem. Res. 2007, 46, 1584–1589, doi:10.1021/ie0612818.
[41]  Duke, M.C.; O’Brien-Abraham, J.; Milne, N.; Zhu, B.; Lin, J.Y.S.; Diniz da Costa, J.C. Seawater desalination performance of mfi type membranes made by secondary growth. Sep. Purif. Technol. 2009, 68, 343–350, doi:10.1016/j.seppur.2009.06.003.
[42]  Brinker, C.J.; Hurd, A.J.; Ward, K.J. Fundamentals of Sol-Gel Thin-Film Formation; Wiley: New York, NY, USA, 1988.
[43]  Uhlmann, D.; Liu, S.; Ladewig, B.P.; Diniz da Costa, J.C. Cobalt-doped silica membranes for gas separation. J. Membr. Sci. 2009, 326, 316–321, doi:10.1016/j.memsci.2008.10.015.
[44]  Uhlmann, D.; Smart, S.; Diniz da Costa, J.C. H2S stability and separation performance of cobalt oxide silica membranes. J. Membr. Sci. 2011, 380, 48–54, doi:10.1016/j.memsci.2011.06.025.
[45]  Duke, M.C.; Pas, S.J.; Hill, A.J.; Lin, Y.S.; Diniz da Costa, J.C. Exposing the molecular sieving architecture of amorphous silica using positron annihilation spectroscopy. Adv. Funct. Mater. 2008, 18, 3818–3826, doi:10.1002/adfm.200800624.
[46]  Li, L.X.; Dong, J.H.; Nenoff, T.M.; Lee, R. Reverse osmosis of ionic aqueous solutions on a mfi zeolite membrane. Desalination 2004, 170, 309–316, doi:10.1016/j.desal.2004.02.102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133