全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Membranes  2013 

Successful Integration of Membrane Technologies in a Conventional Purification Process of Tannery Wastewater Streams

DOI: 10.3390/membranes3030126

Keywords: threshold flux, critical flux, nanofiltration, tannery wastewater, process optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work is to design and integrate an optimized batch membrane process in a conventional purification process used for the treatment of tannery wastewater. The integration was performed by using two spiral wound membrane modules in series, that is, nanofiltration and reverse osmosis, as substitutes to the biological reactor. The membrane process was designed in terms of sensible fouling issues reduction, which may be observed on the nanofiltration membrane if no optimization is performed. The entity of the fouling phenomena was estimated by pressure cycling measurements, determining both the critical and the threshold flux on the nanofiltration membrane. The obtained results were used to estimate the need of the overdesign of the membrane plant, as well as to define optimized operating conditions in order to handle fouling issues correctly for a long period of time. Finally, the developed membrane process was compared, from a technical and economic point of view, with the conventional biological process, widely offered as an external service near tannery production sites, and, here, proposed to be substituted by membrane technologies.

References

[1]  Uberoi, N.K. Environmental Management; Excel Books: New Delhi, India, 2003; p. 269.
[2]  Wiegant, W.M.; Kalker, T.J.J.; Sontakke, V.N.; Zwaag, R.R. Full scale experience with tannery water management: An integrated approach. Water Sci. Technol. 1999, 39, 169–176.
[3]  Sreeram, K.J.; Ramasami, T. Sustaining tanning process through conservation, recovery and better utilization of chromium. Resour. Conserv. Recycl. 2003, 38, 185–212, doi:10.1016/S0921-3449(02)00151-9.
[4]  Stoop, M.L.M. Water management of production systems optimised by environmentally oriented integral chain management: Case study of leather manufacturing in developing countries. Technovation 2003, 23, 265–278, doi:10.1016/S0166-4972(01)00117-1.
[5]  Ahn, D.H.; Chung, Y.C.; Yoo, Y.J.; Pak, D.W.; Chang, W.S. Improved treatment of tannery wastewater using zoogloea ranigera and its extracellular polymer in an activated sludge process. Biotechnol. Lett. 1996, 18, 917–922, doi:10.1007/BF00154621.
[6]  Vijayaraghvan, K.; Murthy, D.V.H. Effect of toxic substances inanaerobic treatment of tannery wastewater. Bioprocess Biosys. Eng. 1997, 16, 151–155, doi:10.1007/s004490050302.
[7]  Wiemann, M.; Schenk, H.; Hegemann, W. Anaerobic treatment oftannery wastewater with simultaneous sulphide elimination. Water Res. 1998, 32, 774–780, doi:10.1016/S0043-1354(97)00309-6.
[8]  Di Iaconi, C.; Lopez, A.; Ramadori, R.; Passino, R. Tannerywastewater treatment by sequencing batch biofilm reactor. Environ. Sci. Technol. 2003, 37, 3199–3205, doi:10.1021/es030002u.
[9]  Farabegoli, G.; Carucci, A.; Majone, M.; Rolle, E. Biological treatment of tannery wastewater in the presence of chromium. J. Environ. Manag. 2004, 71, 345–349, doi:10.1016/j.jenvman.2004.03.011.
[10]  Schrank, S.G.; Jos, H.J.; Moreira, R.F.P.M.; Schroder, H.F. Fentons oxidation of various-based tanning materials. Desalination 2003, 50, 411–423.
[11]  Sekaran, G.; Chitra, K.; Mariappan, K.; Raghavan, K.V. Removal of sulphide in anaerobically treated tannery wastewater by wet air oxidation. J. Environ. Sci. Health 1996, 31, 579–598.
[12]  Dogruel, S.; Ates, G.E.; Germirli, B.F.; Orhon, D. Ozonation of nonbiodegradable organics in tannery wastewater. J. Environ. Sci. Health. A 2004, 39, 1705–1715, doi:10.1081/ESE-120037871.
[13]  Sacco, O.; Stoller, M.; Vaiano, V.; Ciambelli, P.; Chianese, A.; Sannino, D. Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped Photocatalysts. Int. J. Photoenergy 2012, 2012, 626759:1–626759:8.
[14]  Sannino, D.; Vaiano, V.; Sacco, O.; Ciambelli, P. Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation. J. Environ. Chem. Eng. 2013, 1, 56–60, doi:10.1016/j.jece.2013.03.003.
[15]  De Caprariis, B.; di Rita, M.; Stoller, M.; Verdone, N.; Chianese, A. Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production. Chem. Eng. Sci. 2012, 76, 73–80, doi:10.1016/j.ces.2012.03.043.
[16]  Di Iaconi, C.; Lopez, A.; Ricco, G.; Ramadori, R. Treatment options for tannery wastewater. I: Alkalinization with or without post-ozonation. J. Anal. Environ. Cultur. Herit. Chem. 2001, 91, 587–594.
[17]  Orhon, D.; S?zen, S.; ?okg?r, E.U.; Genceli, E.A. The effect of chemical settling on the kinetics and design of activated sludge for tannery wastewaters. Water Sci. Technol. 1998, 38, 355–362, doi:10.1016/S0273-1223(98)00519-8.
[18]  Song, Z.; Williams, C.J.; Edyvean, R.G.J. Treatment of tannery wastewater by chemical coagulation. Desalination 2004, 164, 249–259, doi:10.1016/S0011-9164(04)00193-6.
[19]  Churchley, J.H. Removal of sewage effluent—The use of a fullscaleozone plant. Water Sci. Technol. 1994, 30, 275–284.
[20]  Stern, S.R.; Rodighiro, I. Aerobic treatment of textile dyeing wastewater. Water Sci. Technol. 2003, 47, 55–59.
[21]  Chu, W. Dye removal from textile dye wastewaters using recycled alum sludge. Water Res. 2001, 35, 3147–3152, doi:10.1016/S0043-1354(01)00015-X.
[22]  Field, R.W.; Wu, D.; Howell, J.A.; Gupta, B.B. Critical flux concept for microfiltration fouling. J. Membr. Sci. 1995, 100, 259–272, doi:10.1016/0376-7388(94)00265-Z.
[23]  Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53, doi:10.1016/j.memsci.2006.08.019.
[24]  Field, R.W.; Pearce, G.K. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 2011, 164, 38–44, doi:10.1016/j.cis.2010.12.008.
[25]  Stoller, M.; Bravi, M.; Chianese, A. Threshold flux measurements of a nanofiltration membrane module by critical flux data conversion. Desalination 2013, 315, 142–148, doi:10.1016/j.desal.2012.11.013.
[26]  Stoller, M.; Chianese, A. Optimization of membrane batch processes by means of the critical flux theory. Desalination 2006, 191, 62–70, doi:10.1016/j.desal.2005.07.021.
[27]  Stoller, M.; Bravi, M. Critical flux analyses on differently pretreated olive vegetation waste water streams: some case studies. Desalination 2010, 250, 578–582, doi:10.1016/j.desal.2009.09.027.
[28]  Stoller, M. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. Desalination 2009, 240, 209–217, doi:10.1016/j.desal.2007.12.042.
[29]  Iaquinta, M.; Stoller, M.; Merli, C. Optimization of a nanofiltration membrane process for tomato industry wastewater effluent treatment. Desalination 2009, 245, 314–320, doi:10.1016/j.desal.2008.05.028.
[30]  Stoller, M. Technical optimization of a dual ultrafiltration and nanofiltration pilot plant in batch operation by means of the critical flux theory: A case study. Chem. Eng. Process. 2008, 47, 1165–1170, doi:10.1016/j.cep.2007.07.012.
[31]  Stoller, M. Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chem. Eng. J. 2011, 168, 1140–1148, doi:10.1016/j.cej.2011.01.098.
[32]  Ochando-Pulido, J.M.; Stoller, M.; Bravi, M.; Martinez-Ferez, A.; Chianese, A. Batch membrane treatment of olive vegetation wastewater from two-phase olive oil production process by threshold flux based methods. Sep. Purif. Technol. 2012, 101, 34–41, doi:10.1016/j.seppur.2012.09.015.
[33]  Stoller, M.; de Caprariis, B.; Cicci, A.; Verdone, N.; Bravi, M.; Chianese, A. About proper membrane process design affected by fouling by means of the analysis of measured threshold flux data. Sep. Purif. Technol. 2013, 114, 83–89, doi:10.1016/j.seppur.2013.04.041.
[34]  Stoller, M.; Ochando Pulido, J.M.; Chianese, A. Comparison of Critical and Threshold Fluxes on Ultrafiltration and Nanofiltration by Treating 2-phase or 3-phase Olive Mill Wastewater. Chem. Eng. Trans. 2013, 32, 397–402.
[35]  Stoller, M. A Three Year Long Experience of Effective Fouling Inhibition by Threshold Flux Based Optimization Methods on a NF Membrane Module for Olive Mill Wastewater Treatment. Chem. Eng. Trans. 2013, 32, 37–42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133