This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.
References
[1]
Kraas, F. Megacities and global change: Key priorities. Geogr. J. 2007, 173, 79–82, doi:10.1111/j.1475-4959.2007.232_2.x.
[2]
Pearce, G.K. UF/MF pre-treatment to RO in seawater and wastewater reuse applications: A comparison of energy costs. Desalination 2008, 222, 66–73, doi:10.1016/j.desal.2007.05.029.
[3]
Global Water Intelligence–GWI. New Revenue Stream Springs Up: Water Reuse Market set for Explosive Growth. In Municipal Water Reuse Markets 2010; Media Analytics Ltd.: Oxford, UK, 2009.
[4]
Desalination Committee. Seawater Desalination Power Consumption, White Paper; WaterReuse Association: Alexandra, VA, USA, 2011; p. 11.
[5]
Shaffer, D.L.; Yip, N.Y.; Gilron, J.; Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J. Membr. Sci. 2012, 415–416, 1–8, doi:10.1016/j.memsci.2012.05.016.
[6]
Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology and the environment. Science 2011, 333, 712–717, doi:10.1126/science.1200488.
[7]
Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mari?as, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310, doi:10.1038/nature06599.
[8]
Sim, S.T.V.; Tang, C.-Y.; Krantz, W.B.; Fane, A.G. Pressure Retarded Osmosis for Marina Barrage and Sustainable Brine Disposal. In Singapore-Netherlands Water Challenge 2011/2012, Singapore, 19 April 2012.
[9]
Feinberg, B.; Ramon, G.; Hoek, E.M.V. A thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. Environ. Sci. Technol. 2013, 47, 2982–2989.
[10]
Cath, T.Y. Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination process. Desalin. Water Treat. 2010, 15, 279–286, doi:10.5004/dwt.2010.1760.
[11]
Bamaga, O.A.; Yokochi, A.; Zabara, B.; Babaqi, A.S. Hybrid FO/RO desalination system: Preliminary assessment of osmotic energy recovery and designs of new FO membrane module configurations. Desalination 2011, 258, 153–159.
[12]
Sharqawy, M.H.; Zubair, S.M.; Lienhard, V.J.H. Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis. Energy 2011, 36, 6617–6626, doi:10.1016/j.energy.2011.08.056.
[13]
Knutson, C. Discussion of “Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis [Energy (2011) 36: 6617–6626]”. Energy 2012, 46, 688–690, doi:10.1016/j.energy.2012.07.057.
[14]
Sharqawy, M.H.; Zubair, S.M.; Lienhard, V.J.H. Rebuttal to “Discussion of ‘Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis’ [Energy (2011) 36: 6617–6626]”. Energy 2012, 46, 691–693, doi:10.1016/j.energy.2012.08.035.
[15]
Li, W.; Krantz, W.B.; Cornelissen, E.R.; Post, J.W.; Verliefde, A.R.D.; Tang, C.-Y. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl. Energ. 2013, 104, 592–602, doi:10.1016/j.apenergy.2012.11.064.
[16]
C?té, P.; Masini, M.; Mourato, D. Comparison of membrane options for water reuse and reclamation. Desalination 2004, 167, 1–11, doi:10.1016/j.desal.2004.06.105.
[17]
Qin, J.-J.; Oo, M.H.; Wai, M.N.; Lee, H.; Hong, S.P.; Kim, J.E.; Xing, Y.; Zhang, M. Pilot study for reclamation of secondary treated sewage effluent. Desalination 2004, 171, 299–305.
[18]
National Research Foundation. Factsheet on EWI’s Challenge Request-for-Proposal on Achieving ≥93% Water Recovery from Membrane Bioreactor Filtrate, Research, Innovation and Technology Administration (RITA) System. 2012. Available online: https://rita.nrf.gov.sg/ewi/ChallengeRFP1201/default.aspx (accessed on 7 February 2013).
[19]
Qin, J.-J.; Oo, M.H.; Lee, H.; Kolkman, R. Dead-end filtration for pretreatment of RO in reclamation of municipal wastewater effluent. J. Membr. Sci. 2004, 243, 107–113, doi:10.1016/j.memsci.2004.06.010.
[20]
Saito, K.; Irie, M.; Zaitsu, S.; Sakai, H.; Hayashi, H.; Tanioka, A. Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from SWRO system and treated sewage as pure water. Desalin. Water Treat. 2012, 4, 114–121.
[21]
Chou, S.; Wang, R.; Shi, L.; She, Q.; Tang, C.-Y.; Fane, A.G. Thin-film composite hollow fibre membranes for pressure retarded osmosis (PRO) process with high power density. J. Membr. Sci. 2012, 389, 25–33, doi:10.1016/j.memsci.2011.10.002.
[22]
Qi, S.; Qiu, C.Q.; Zhao, Y.; Tang, C.-Y. Double-skinned forward osmosis membranes based on layer-by-layer assembly–FO performance and fouling behaviour. J. Membr. Sci. 2012, 405–406, 20–29, doi:10.1016/j.memsci.2012.02.032.
[23]
Ma, N.; Wei, J.; Liao, R.; Tang, C.-Y. Zeolite-polyamide thin film composite membranes: Towards enhanced performance for forward osmosis. J. Membr. Sci. 2012, 405–406, 149–157, doi:10.1016/j.memsci.2012.03.002.
[24]
Farooque, A.M.; Jamaluddin, A.T.M.; Al-Reweli, A.R.; Jalaluddin, P.A.M.; Al-Mobeyed, S.M.; Qasim, A.H. Parametric analyses of energy consumption and losses in SWCC SWRO plants utilizing energy recovery devices. Desalination 2008, 219, 137–159, doi:10.1016/j.desal.2007.06.004.
[25]
Stover, R.L. Seawater reverse osmosis with isobaric energy recovery devices. Desalination 2007, 203, 168–175, doi:10.1016/j.desal.2006.03.528.
[26]
Stover, R.L.; Martin, J. Reverse osmosis and osmotic power generation with isobaric energy recovery. Desalin. Water Treat. 2010, 15, 267–270, doi:10.5004/dwt.2010.1757.
[27]
Arkhangelsky, E.; Wicaksana, F.; Chou, S.; Al-Rabiah, A.A.; Al-Zahrani, S.M.; Wang, R. Effects of scaling and cleaning on the performance of forward osmosis hollow fiber membranes. J. Membr. Sci. 2012, 415–416, 101–108, doi:10.1016/j.memsci.2012.04.041.
[28]
Tang, C.-Y.; She, Q.; Ma, N.; Wei, J.; Sim, S.T.V.; Fane, A.G. Reinforced Membranes for Producing Osmotic Power in Pressure Retarded Osmosis. U.S. Provisional Patent 61/683,475, 15 August 2012.
[29]
Kurihara, M.; Hanakawa, M. Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 2013, 308, 131–137, doi:10.1016/j.desal.2012.07.038.
[30]
Saliby, I.E.; Okour, Y.; Shon, H.K.; Kandasamy, J.; Kim, I.S. Desalination plants in Australia, review and facts. Desalination 2009, 247, 1–14, doi:10.1016/j.desal.2008.12.007.
[31]
Department of Climate Change and Energy Efficiency, Australian Government. Clean energy legislation: the way ahead. 2012. Available online: http://www.climatechange.gov.au/en/government/Carbon%20Pricing%20Policy/legislation.aspx (accessed on 7 February 2013).
[32]
Jin, X.; Jawor, A.; Kim, S.; Hoek, E.M.V. Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. Desalination 2009, 239, 346–359, doi:10.1016/j.desal.2008.03.026.
[33]
Thorsen, T.; Holt, T. The potential for power production from salinity gradients by pressure retarded osmosis. J. Membr. Sci. 2009, 335, 103–110, doi:10.1016/j.memsci.2009.03.003.
[34]
Loeb, S. Production of energy from concentrated brines by pressure retarded osmosis. I. Preliminary technical and economic correlations. J. Membr. Sci. 1976, 1, 49–63, doi:10.1016/S0376-7388(00)82257-7.
[35]
Loeb, S.; Hessen, F.V.; Shahaf, D. Production of energy from concentrated brines by pressure retarded osmosis. II. Experimental results and projected energy costs. J. Membr. Sci. 1976, 1, 249–269, doi:10.1016/S0376-7388(00)82271-1.
[36]
Loeb, S. Energy production at the Dead Sea by pressure-retarded osmosis: Challenge or chimera? Desalination 1998, 120, 247–262, doi:10.1016/S0011-9164(98)00222-7.
[37]
Loeb, S. One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis. Desalination 2001, 141, 85–91.
[38]
Ramon, G.Z.; Feinberg, B.J.; Hoek, E.M.V. Membrane-based production of salinity gradient power. Energy Environ. Sci. 2011, 4, 4423–4434, doi:10.1039/c1ee01913a.
[39]
Lee, K.L.; Baker, R.W.; Lonsdale, H.K. Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci. 1981, 8, 141–171, doi:10.1016/S0376-7388(00)82088-8.
[40]
Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 2011, 367, 340–352, doi:10.1016/j.memsci.2010.11.014.
[41]
Wei, J.; Qiu, C.; Tang, C.-Y.; Wang, R.; Fane, A.G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J. Membr. Sci. 2011, 372, 292–302, doi:10.1016/j.memsci.2011.02.013.
[42]
McGinnis, R.L.; McCutcheon, J.R.; Elimelech, M. A novel ammonia–carbon dioxide osmotic heat engine for power generation. J. Membr. Sci. 2007, 305, 13–19, doi:10.1016/j.memsci.2007.08.027.
[43]
Achilli, A.; Cath, T.Y.; Childress, A.E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci. 2009, 343, 42–52, doi:10.1016/j.memsci.2009.07.006.
[44]
Xu, Y.; Peng, X.; Tang, C.-Y.; Fu, Q.S.; Nie, S. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. J. Membr. Sci. 2010, 348, 298–309, doi:10.1016/j.memsci.2009.11.013.
[45]
Yip, N.Y.; Tiraferri, A.; Phillip, W.A.; Schiffman, J.D.; Hoover, L.A.; Kim, Y.C.; Elimelech, M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol. 2011, 45, 4360–4369.
[46]
She, Q.; Jin, X.; Tang, C.-Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute flux diffusion. J. Membr. Sci. 2012, 401–402, 262–273, doi:10.1016/j.memsci.2012.02.014.
[47]
Chou, S.; Shi, L.; Wang, R.; Tang, C.-Y.; Qiu, C.; Fane, A.G. Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination 2010, 261, 365–372.
Nijmeijer, K.; Metz, S. Salinity Gradient Energy. In Sustainable Water for the Future: Water Recycling versus Desalination; Escobar, I.C., Sch?fer, A.I., Eds.; Elsevier: Amsterdam, the Netherlands and Oxford, UK, 2010; pp. 95–140.
[51]
Song, X.; Liu, Z.; Sun, D.D. Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density. Energy Environ. Sci. 2013, 6, 1199–1210, doi:10.1039/c3ee23349a.
[52]
Malek, A.; Hawlader, M.N.A.; Ho, J.C. Design and economics of RO seawater desalination. Desalination 1996, 105, 245–261, doi:10.1016/0011-9164(96)00081-1.
[53]
Park, C.; Park, P.-K.; Mane, P.P.; Hyung, H.; Gandhi, V.; Kim, S.-H.; Kim, J.-H. Stochastic cost estimatation approach for full-scale reverse osmosis desalination plants. J. Membr. Sci. 2010, 364, 52–64, doi:10.1016/j.memsci.2010.07.055.
[54]
Kim, Y.M.; Kim, S.J.; Kim, Y.S.; Lee, S.; Kim, I.S.; Kim, J.H. Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network. Desalination 2009, 238, 312–332, doi:10.1016/j.desal.2008.10.004.
[55]
Gille, D. Seawater intakes for desalination plants. Desalination 2003, 156, 249–256, doi:10.1016/S0011-9164(03)00347-3.
Lu, Y.Y.; Hu, Y.D.; Xu, D.M.; Wu, L.Y. Optimum design of reverse osmosis seawater desalination system considering membrane cleaning and replacing. J. Membr. Sci. 2006, 282, 7–13, doi:10.1016/j.memsci.2006.04.019.
[58]
Watson, I.C.; Morin, O.J.J.; Henthorne, L. Desalting Handbook for Planners; United States Department of Interior, Bureau of Reclamation: Denver, CO, USA, 2003.
[59]
Moch, I.J.; Querns, W.R.; Steward, D. WT Cost II–Modeling the Capital and Operating Costs of Thermal Desalination Processes Utilizing a Recently Developed Computer Program that Evaluates Membrane Desalting, Electrodialysis, and Ion Exchange Plants; United States Department of Interior, Bureau of Reclamation: Denver, CO, USA, 2008.
[60]
Ahmed, M.; Shayya, W.; Hoey, D. Use of evaporation ponds for brine disposal in desalination plants. Desalination 2000, 130, 155–168, doi:10.1016/S0011-9164(00)00083-7.
[61]
Stover, R.L. Energy Recovery Devices in Desalination Applications. In Proceedings of the International Water Association (IWA) North American Membrane Research Conference, Amherst, MA, USA, 10–13 August 2008.