Nafion is one of the most common materials used for polyelectrolyte membranes and is the standard to which novel materials are compared. In spite of great interest in Nafion’s nanostructure, it is still a subject of controversy. While multiple research efforts have addressed Nafion’s morphology with Transmission Electron Microscopy, the results of these efforts have often been inconsistent and cannot satisfactorily describe the membrane structure. One of the reasons for differences in the reported results is the lack of sufficient control over the damage caused by electron beam irradiation. In this work, we describe some aspects of damage in the material that have a strong influence on the results. We show that irradiation causes mass loss and phase separation in the material and that the morphologies that have been observed are, in many cases, artifacts caused by damage. We study the effect of the sample temperature on damage and show that, while working at low temperature does not prevent damage and mass loss, it slows formation of damage-induced artifacts to the point where informative low-dose images of almost undamaged material may be collected. We find that charging of the sample has a substantial effect on the damage, and the importance of charge neutralization under irradiation is also seen by the large reduction of beam induced movement with the use of an objective aperture or a conductive support film. To help interpret the low-dose images, we can apply slightly higher exposures to etch away the hydrophobic phase with the electron beam and reveal the network formed by the hydrophilic phase. Energy loss spectroscopy shows evidence that fluorine removal governs the beam damage process.
References
[1]
Heitner-Wirguin, C. Recent advances in perfluorinated ionomer membranes: Structure, properties and applications. J. Membr. Sci. 1996, 120, 1–33, doi:10.1016/0376-7388(96)00155-X.
[2]
Mauritz, K.A.; Moore, R.B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4535–4585, doi:10.1021/cr0207123.
[3]
Józef, C. Electron microscopy investigation of ion exchange membranes. Polymer 1978, 19, 73–76, doi:10.1016/0032-3861(78)90176-3.
[4]
Porat, Z.; Fryer, J.R.; Huxham, M.; Rubinstein, I. Electron Microscopy Investigation of the Microstructure of Nafion Films. J. Phys. Chem. 1995, 99, 4667–4671, doi:10.1021/j100013a043.
[5]
Fujimura, M.; Hashimoto, T.; Kawai, H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules 1982, 15, 136–144, doi:10.1021/ma00229a028.
[6]
Li, C.; Register, R.A.; Cooper, S.L. Direct observation of ionic aggregates in sulphonated polystyrene ionomers. Polymer 1989, 30, 1227–1233, doi:10.1016/0032-3861(89)90040-2.
[7]
Bahr, G.F.; Johnson, F.B.; Zeitler, E. Elementarty composition of organic objects after electron irradiation. Lab. Invest. 1965, 14, 1115–1133.
[8]
Ciliax, B.J.; Kirk, K.L.; Leapman, R.D. Radiation damage of fluorinated organic compounds measured by parallel electron energy loss spectroscopy. Ultramicroscopy 1993, 48, 13–25, doi:10.1016/0304-3991(93)90167-V.
[9]
Glaeser, R.M.; Taylor, K.A. Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: A review. J. Microsc. 1978, 112, 127–138, doi:10.1111/j.1365-2818.1978.tb01160.x.
[10]
Hongsirikarn, K.; Mo, X.; Goodwin, J.G., Jr.; Creager, S. Effect of H2O2 on Nafion? properties and conductivity at fuel cell conditions. J. Power Sources 2011, 196, 3060–3072, doi:10.1016/j.jpowsour.2010.11.133.
[11]
Peron, J.; Mani, A.; Zhao, X.; Edwards, D.; Adachi, M.; Soboleva, T.; Shi, Z.; Xie, Z.; Navessin, T.; Holdcroft, S. Properties of Nafion? NR-211 membranes for PEMFCs. J. Membr. Sci. 2010, 356, 44–51, doi:10.1016/j.memsci.2010.03.025.
[12]
Scheiba, F.; Benker, N.; Kunz, U.; Roth, C.; Fuess, H. Electron microscopy techniques for the analysis of the polymer electrolyte distribution in proton exchange membrane fuel cells. J. Power Sources 2008, 177, 273–280.
[13]
Peiffer, D.G.; Weiss, R.A.; Lundberg, R.D. Microphase separation in sulfonated polystyrene ionomers. J. Polym. Sci. 1982, 20, 1503–1509.
Ahn, C.C.; Krivanek, O.L. EELS Atlas: A Reference Collection of Electron Energy Loss Spectra Covering All Stable Elements; Gatan: Warrendale, PA, USA, 1983.
[16]
Yakovlev, S.; Libera, M. Cryo-STEM EELS of Nafion Saturated with an Organic Solvent. Microsc. Microanal. 2006, 12, 996–997, doi:10.1017/S1431927606067997.
[17]
Hinatsu, J.T.; Mizuhata, M.; Takenaka, H. Water-Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water-Vapor. J. Electrochem. Soc. 1994, 141, 1493–1498, doi:10.1149/1.2054951.
[18]
Chan, C.D.; Seitz, M.E.; Winey, K.I. Disordered Spheres with Extensive Overlap in Projection: Image Simulation and Analysis. Microsc. Microanal. 2011, 17, 872–878, doi:10.1017/S1431927611012190.
[19]
Sperati, C.A.; Starkweather, H.W., Jr. Fluorine-containing polymers. II. Polytetrafluoroethylene. Adv. Polym. Sci. 1961, 2, 465–495, doi:10.1007/BFb0050504.
[20]
Chanzy, H.; Folda, T.; Smith, P.; Gardner, K.; Revol, J.F. Lattice imaging in polytetrafluoroethylene single crystals. J. Mater. Sci. Lett. 1986, 5, 1045–1047, doi:10.1007/BF01730278.