Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si 3N 4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.
References
[1]
Lemons, R.A. Fuel cells for transportation. J. Power Sources 1990, 29, 251–264, doi:10.1016/0378-7753(90)80024-8.
[2]
Iulianelli, A.; Longo, T.; Basile, A. Methanol steam reforming reaction in a Pd–Ag membrane reactor for CO-free hydrogen production. Int. J. Hydrog. Energy 2008, 33, 5583–5588, doi:10.1016/j.ijhydene.2008.07.044.
[3]
Avgouropoulos, G.; Ioannides, T. CO tolerance of Pt and Rh catalysts: Effect of CO in the gas-phase oxidation of H2 over Pt and Rh supported catalysts. Appl. Catal. B Environ. 2005, 56, 77–86, doi:10.1016/j.apcatb.2004.07.016.
[4]
Pereira, L.G.S.; Paganin, V.A.; Ticianelli, E.A. Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim. Acta 2009, 54, 1992–1998, doi:10.1016/j.electacta.2008.07.003.
[5]
Tang, Y.; Zhang, H.; Zhong, H.; Xu, Z. In-situ investigation on the CO tolerance of carbon supported Pd–Pt electrocatalysts with low Pt content by electrochemical impedance spectroscopy. Int. J. Hydrog. Energy 2012, 37, 2129–2136, doi:10.1016/j.ijhydene.2011.10.104.
[6]
Uchida, H.; Ozuka, H.; Watanabe, M. Electrochemical quartz crystal microbalance analysis of CO-tolerance at Pt–Fe alloy electrodes. Electrochim. Acta 2002, 47, 3629–3636, doi:10.1016/S0013-4686(02)00333-X.
[7]
Li, M.-Q.; Shao, Z.-G.; Scott, K. A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature. J. Power Sources 2008, 183, 69–75, doi:10.1016/j.jpowsour.2008.04.093.
[8]
Mamlouk, M.; Scott, K. The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. Int. J. Hydrog. Energy 2010, 35, 784–793, doi:10.1016/j.ijhydene.2009.11.027.
[9]
Mamlouk, M.; Scott, K. An investigation of Pt alloy oxygen reduction catalysts in phosphoric acid doped PBI fuel cells. J. Power Sources 2011, 196, 1084–1089, doi:10.1016/j.jpowsour.2010.08.021.
[10]
Sousa, T.; Mamlouk, M.; Scott, K. A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Int. J. Hydrog. Energy 2010, 35, 12065–12080, doi:10.1016/j.ijhydene.2010.08.057.
[11]
Sousa, T.; Mamlouk, M.; Scott, K. An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Chem. Eng. Sci. 2010, 65, 2513–2530, doi:10.1016/j.ces.2009.12.038.
[12]
Peters, R.; Düsterwald, H.G.; H?hlein, B. Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car. J. Power Sources 2000, 86, 507–514, doi:10.1016/S0378-7753(99)00477-2.
[13]
Pettersson, L.J.; Westerholm, R. State of the art of multi-fuel reformers for fuel cell vehicles: Problem identification and research needs. Int. J. Hydrog. Energy 2001, 26, 243–264, doi:10.1016/S0360-3199(00)00073-2.
[14]
Cheng, F.; Clark, S.; Kelly, S.M.; Bradley, J.S.; Lefebvre, F. Preparation of mesoporous silicon nitride via a nonaqueous sol–gel route. J. Am. Ceram. Soc. 2004, 87, 1413–1417, doi:10.1111/j.1551-2916.2004.01413.x.
[15]
Cheng, F.; Kelly, S.M.; Clark, S.; Bradley, J.S.; Baumbach, M.; Schütze, A. Preparation and characterization of a supported Si3N4 membrane via a non-aqueous sol–gel process. J. Membr. Sci. 2006, 280, 530–535, doi:10.1016/j.memsci.2006.02.006.
[16]
Kuraoka, K.; Kubo, N.; Yazawa, T. Microporous silica xerogel membrane with high selectivity and high permeance for carbon dioxide separation. J. Sol-Gel Sci. Technol. 2000, 19, 515–518, doi:10.1023/A:1008728320293.
[17]
Mori, H.; Mase, S.; Yoshimura, N.; Hotta, T.; Ayama, K.; Tsubaki, J.I. Fabrication of supported Si3N4 membranes using the pyrolysis of liquid polysilazane precursor. J. Membr. Sci. 1998, 147, 23–33, doi:10.1016/S0376-7388(98)00116-1.
[18]
Tong, H.D.; Jansen, H.V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, E.; van Rijn, C.J.M.; Elwenspoek, M. Silicon nitride nanosieve membrane. Nano Lett. 2004, 4, 283–287, doi:10.1021/nl0350175.
[19]
Rovai, R.; Lehmann, C.W.; Bradley, J.S. Non-oxide sol–gel chemistry: Preparation from tris(dialkylamino)silazanes of a carbon-free, porous, silicon diimide gel. Angew. Chem. Int. Ed. 1999, 38, 2036–2038, doi:10.1002/(SICI)1521-3773(19990712)38:13/14<2036::AID-ANIE2036>3.0.CO;2-Q.
[20]
Mamlouk, M.; Scott, K. Analysis of high temperature polymer electrolyte membrane fuel cell electrodes using electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 5493–5512, doi:10.1016/j.electacta.2011.03.056.