Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)
Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O 2, N 2, CO 2 and CH 4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model.
References
[1]
Davis, J.C.; Valus, R.J.; Eshraghi, R.; Velikoff, A.E. Facilitated transport membrane hybrid systems for olefin purification. Sep. Sci. Technol. 1993, 28, 463–476, doi:10.1080/01496399308019500.
[2]
Strathmann, H. Membrane separation processes: Current relevance and future opportunities. AIChE J. 2001, 47, 1077–1087, doi:10.1002/aic.690470514.
[3]
He, X.; H?gg, M.-J. Membranes for environmentally friendly energy processes. Membranes 2012, 2, 706–726, doi:10.3390/membranes2040706.
[4]
Koros, W.J.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2000, 175, 181–196, doi:10.1016/S0376-7388(00)00418-X.
[5]
Ohlrogge, K.; Stürken, K. The Separation of Organic Vapors from Gas Streams by Means of Membranes. In Membrane Technology; Wiley-VCH: Weinheim, Germany, 2001; pp. 69–94.
[6]
Baker, R.W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411, doi:10.1021/ie0108088.
[7]
BORSIG Membrane Technology GmbH. Available online: http://www.borsig-china.com/#productrecovery (accessed on 18 October 2013).
[8]
Sulzer Chemtech AG. Available online: http://www.sulzerchemtech.com (accessed on 18 October 2013).
[9]
Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185, doi:10.1016/0376-7388(91)80060-J.
[10]
Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400, doi:10.1016/j.memsci.2008.04.030.
[11]
Basu, S.; Cano-Odena, A.; Vankelecom, I.F.J. Asymmetric Matrimid?/[Cu3(BTC)2] mixed-matrix membranes for gas separations. J. Membr. Sci. 2010, 362, 478–487, doi:10.1016/j.memsci.2010.07.005.
[12]
Chung, T.S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507, doi:10.1016/j.progpolymsci.2007.01.008.
[13]
Zornoza, B.; Martinez-Joaristi, A.; Serra-Crespo, P.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 2011, 47, 9522–9524, doi:10.1039/c1cc13431k.
[14]
Nik, O.G.; Chen, X.Y.; Kaliaguine, S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2012, 413–414, 48–61, doi:10.1016/j.memsci.2012.04.003.
[15]
Tanh Jeazet, H.B.; Staudt, C.; Janiak, C. Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans. 2012, 41, 14003–14027, doi:10.1039/c2dt31550e.
[16]
Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater. 2013, 166, 67–78, doi:10.1016/j.micromeso.2012.03.012.
[17]
Bastani, D.; Esmaeili, N.; Asadollahi, M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. J. Ind. Eng. Chem. 2013, 19, 375–393, doi:10.1016/j.jiec.2012.09.019.
[18]
Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A 2013, 1, 4610–4630, doi:10.1039/c3ta00927k.
Rebollar-Perez, G.; Carretier, E.; Lesage, N.; Moulin, P. Volatile organic compound (VOC) removal by vapor permeation at low VOC concentrations: Laboratory scale results and modeling for scale up. Membranes 2011, 1, 80–90, doi:10.3390/membranes1010080.
[22]
Dumee, L.; Velleman, L.; Sears, K.; Hill, M.; Schutz, J.; Finn, N.; Duke, M.; Gray, S. Control of porosity and pore size of metal reinforced carbon nanotube membranes. Membranes 2011, 1, 25–36.
[23]
Noble, R.D. Perspectives on mixed matrix membranes. J. Membr. Sci. 2011, 378, 393–397, doi:10.1016/j.memsci.2011.05.031.
Liu, D.H.; Zhong, C.L. Understanding gas separation in metal-organic frameworks using computer modeling. J. Mater. Chem. 2010, 20, 10308–10318, doi:10.1039/c0jm01045f.
[26]
Meek, S.T.; Greathouse, J.A.; Allendorf, M.D. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267, doi:10.1002/adma.201002854.
Kitagawa, S.; Matsuda, R. Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 2007, 251, 2490–2509, doi:10.1016/j.ccr.2007.07.009.
[29]
Maji, T.K.; Kitagawa, S. Chemistry of porous coordination polymers. Pure Appl. Chem. 2007, 79, 2155–2177, doi:10.1351/pac200779122155.
[30]
Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2003, 2781–2804, doi:10.1039/b305705b.
[31]
Janiak, C.; Vieth, J.K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388, doi:10.1039/c0nj00275e.
[32]
Long, J.R.; Yaghi, O.M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214, doi:10.1039/b903811f.
[33]
Biradha, K. Introduction to the themed issue “Coordination polymers: Structure and function”. New J. Chem. 2010, 34, 2353–2354, doi:10.1039/c005535m.
[34]
Zaworotko, M.J. There is plenty of room in the middle: Crystal clear opportunities abound for coordination polymers. New J. Chem. 2010, 34, 2355–2356, doi:10.1039/c005534b.
[35]
Kitagawa, S.; Natarajan, S. Targeted fabrication of MOFs for hybrid functionality. Eur. J. Inorg. Chem. 2010, 2010, 3685, doi:10.1002/ejic.201090071.
Czaja, A.U.; Trukhan, N.; Müller, U. Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1284–1293, doi:10.1039/b804680h.
[38]
Férey, G. Some suggested perspectives for multifunctional hybrid porous solids. Dalton Trans. 2009, 4400–4415, doi:10.1039/b817360p.
[39]
Prakash, M.J.; Lah, M.S. Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks. Chem. Commun. 2009, 3326–3341, doi:10.1039/b902988e.
[40]
Wu, H.; Gong, Q.; Olson, D.H.; Li, J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 2012, 112, 836–868, doi:10.1021/cr200216x.
[41]
Li, K.; Olson, D.H.; Li, J. Commensurate adsorption of hydrocarbons in microporous metal-organic frameworks. Trends Inorg. Chem. 2010, 12, 13–24.
[42]
Murray, L.J.; Dinca, M.; Long, J.R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314, doi:10.1039/b802256a.
[43]
Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504, doi:10.1039/b802426j.
[44]
Morris, R.E.; Wheatley, P.S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 2008, 47, 4966–4981, doi:10.1002/anie.200703934.
[45]
Paik Suh, M.; Park, H.J.; Prasad, T.K.; Lim, D.-W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782–835, doi:10.1021/cr200274s.
[46]
Paik Suh, M.; Cheon, Y.E.; Lee, E.Y. Syntheses and functions of porous metallosupramolecular networks. Coord. Chem. Rev. 2008, 252, 1007–1026, doi:10.1016/j.ccr.2008.01.032.
[47]
Düren, T.; Bae, Y.-S.; Snurr, R.Q. Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem. Soc. Rev. 2009, 38, 1237–1247, doi:10.1039/b803498m.
[48]
Han, S.S.; Mendoza-Cortés, J.L.; Goddard, W.A., III. Recent advances on simulation and theory ofhydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem. Soc. Rev. 2009, 38, 1460–1476, doi:10.1039/b802430h.
[49]
Getman, R.B.; Bae, Y.-S.; Wilmer, C.E.; Snurr, R.Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703–723.
[50]
Chen, Z.; Xiang, S.; Arman, H.D.; Li, P.; Tidrow, S.; Zhao, D.; Chen, B. A microporous metal-organic framework with immobilized –OH functional groups within the pore surfaces for selective gas sorption. Eur. J. Inorg. Chem. 2010, 2010, 3745–3749, doi:10.1002/ejic.201000349.
[51]
Ma, F.; Liu, S.; Liang, D.; Ren, G.; Zhang, C.; Wei, F.; Su, Z. Hydrogen adsorption in polyoxometalate hybrid compounds based on porous metal-organic frameworks. Eur. J. Inorg. Chem. 2010, 2010, 3756–3761, doi:10.1002/ejic.201000331.
Zhang, Z.; Zhao, Y.; Gong, Q.; Li, Z.; Li, J. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity. Chem. Commun. 2013, 49, 653–661, doi:10.1039/c2cc35561b.
Nune, S.K.; Thallapally, P.K.; McGrail, B.P. Metal organic gels (MOGs): A new class of sorbents for CO2 separation applications. J. Mater. Chem. 2010, 20, 7623–7625, doi:10.1039/c0jm01907k.
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231, doi:10.1021/cr2003147.
[66]
Ladrak, T.; Smulders, S.; Roubeau, O.; Teat, S.J.; Gamez, P.; Reedijk, J. Manganese-based metal-organic frameworks as heterogeneous catalysts for the cyanosilylation of acetaldehyde. Eur. J. Inorg. Chem. 2010, 2010, 3804–3812, doi:10.1002/ejic.201000378.
[67]
Kleist, W.; Jutz, F.; Maciejewski, M.; Baiker, A. Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem. 2009, 2009, 3552–3561, doi:10.1002/ejic.200900509.
[68]
Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248–1256, doi:10.1039/b807083k.
Farrusseng, D.; Aguado, S.; Pinel, C. Metal-organic frameworks: Opportunities for catalysis. Angew. Chem. Int. Ed. 2009, 48, 7502–7513, doi:10.1002/anie.200806063.
[71]
Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; van Tendeloo, G.; Fischer, R.A. Metals@MOFs—Loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 2010, 2010, 3701–3714, doi:10.1002/ejic.201000473.
[72]
Falcaro, P.; Hill, A.J.; Nairn, K.M.; Jasieniak, J.; Mardel, J.I.; Bastow, T.J.; Mayo, S.C.; Gimona, M.; Gomez, D.; Whitfield, H.J.; et al. A new method to position and functionalize metal-organic framework crystals. Nat. Commun. 2011, 2, 237, doi:10.1038/ncomms1234.
[73]
Khutia, A.; Rammelberg, H.U.; Schmidt, T.; Henninger, S.K.; Janiak, C. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 2013, 25, 790–798, doi:10.1021/cm304055k.
[74]
Henninger, S.K.; Jeremias, F.; Kummer, H.; Janiak, C. MOFs for use in adsorption heat pump processes. Eur. J. Inorg. Chem. 2012, 2012, 2625–2634, doi:10.1002/ejic.201101056.
[75]
Jeremias, F.; Khutia, A.; Henninger, S.K.; Janiak, C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—A promising application. J. Mater. Chem. 2012, 22, 10148–10151.
[76]
Ehrenmann, J.; Henninger, S.K.; Janiak, C. Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs. Eur. J. Inorg. Chem. 2011, 2011, 471–474, doi:10.1002/ejic.201001156.
[77]
Henninger, S.K.; Habib, H.A.; Janiak, C. MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 2009, 131, 2776–2777, doi:10.1021/ja808444z.
[78]
Tao, S.J. Positronium annihilation in molecular substances. J. Chem. Phys. 1972, 56, 5499–5510, doi:10.1063/1.1677067.
[79]
Eldrup, M.; Lightbody, D.; Sherwood, J.N. The temperature-dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 1981, 63, 51–58, doi:10.1016/0301-0104(81)80307-2.
[80]
Kruse, J.; R?tzke, K.; Faupel, F.; Sterescu, D.M.; Stamatialis, D.F.; Wessling, M. Free volume in C-60 modified PPO polymer membranes by positron annihilation lifetime spectroscopy. J. Phys. Chem. B 2007, 111, 13914–13918.
[81]
Konietzny, R.; Barth, C.; Harms, S.; R?tzke, K.; K?lsch, P.; Staudt, C. Structural investigations and swelling behavior of 6FDA copolyimide thin films. Polym. Int. 2011, 60, 1670–1678, doi:10.1002/pi.3123.
[82]
Harms, S.; R?tzke, K.; Zaporojtchenko, V.; Faupel, F.; Egger, W.; Ravelli, L. Free volume distribution at the Teflon AF (R)/silicon interfaces probed by a slow positron beam. Polymer 2011, 52, 505–509, doi:10.1016/j.polymer.2010.11.039.
[83]
Song, Q.; Nataraj, S.K.; Roussenova, M.V.; Tan, J.C.; Hughes, D.J.; Li, W.; Bourgoin, P.; Alam, M.A.; Cheetham, A.K.; Al-Muhtaseb, S.A.; et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5, 8359–8369, doi:10.1039/c2ee21996d.
[84]
Bushell, A.F.; Attfield, M.P.; Mason, C.R.; Budd, P.M.; Yampolskii, Y.; Starannikova, L.; Rebrov, A.; Bazzarelli, F.; Bernardo, P.; Jansen, J.C.; et al. Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 2013, 427, 48–62, doi:10.1016/j.memsci.2012.09.035.
[85]
Tanh Jeazet, H.B.; Staudt, C.; Janiak, C. A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone. Chem. Commun. 2012, 48, 2140–2142, doi:10.1039/c2cc16628c.
[86]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042, doi:10.1126/science.1116275.
[87]
Brandenburg, K. Diamond—Crystal and Molecular Structure Visualization. version 3.2; Crystal Impact, H.Putz & K.Brandenburg GbR: Bonn, Germany, 2007–2012.
[88]
Wieneke, J.U.; Staudt, C. Thermal stability of 6FDA-(co-)polyimides containing carboxylic acid groups. Polym. Degrad. Stab. 2010, 95, 684–693, doi:10.1016/j.polymdegradstab.2009.11.041.
[89]
Kruse, J.; Kanzow, J.; R?tzke, K.; Faupel, F.; Heuchel, M.; Frahn, J.; Hofmann, D. Free volume in polyimides: Positron annihilation experiments and molecular modeling. Macromolecules 2005, 38, 9638–9643.
[90]
Kansy, J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods A 1996, 374, 235–244, doi:10.1016/0168-9002(96)00075-7.
[91]
Dull, T.L.; Frieze, W.E.; Gidley, D.W.; Sun, J.N.; Yee, A.F. Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium. J. Phys. Chem. B 2001, 105, 4657–4662, doi:10.1021/jp004182v.
[92]
Nagel, C.; Schmidtke, E.; Günther-Schade, K.; Hofmann, D.; Fritsch, D.; Strunskus, T.; Faupel, F. Free volume distributions in glassy polymer membranes: Comparison between molecular modeling and experiments. Macromolecules 2000, 33, 2242–2248, doi:10.1021/ma990760y.
[93]
Jean, Y.C.; Mallon, P.E.; Schrader, D.M. Principles and Applications of Positron & Positronium Chemistry; World Scientific: River Edge, NJ, USA, 2003.
[94]
MIL-101 mass fractions in the MMM had been erroneously calculated somewhat too high in reference [85]. Instead of 8, 16 and 24 wt % the correct mass fractions are 7.5, 14 and 19 wt %, respectively for MIL-101 in PSF. This recalculation does not change the conclusions drawn in reference [85]. To the contrary, the increase in permeability is already achieved with even lower MIL-101 mass fractions.
[95]
Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663, doi:10.1021/ie8019032.
[96]
Hunger, K.; Schmeling, N.; Tanh Jeazet, H.B.; Janiak, C.; Staudt, C.; Kleinermanns, K. Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes 2012, 2, 727–763, doi:10.3390/membranes2040727.
[97]
Petropoulos, J.H. A comparative-study of approaches applied to the permeability of binary composite polymeric materials. J. Polym. Sci. 1985, 23, 1309–1324.
[98]
Keskin, S.; Sholl, D.S. Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification. Energy Environ. Sci. 2010, 3, 343–351, doi:10.1039/b923980b.
[99]
Bouma, R.H.B.; Checchetti, A.; Chidichimo, G.; Drioli, E. Permeation through a heterogeneous membrane: The effect of the dispersed phase. J. Membr. Sci. 1997, 128, 141–149, doi:10.1016/S0376-7388(96)00303-1.
[100]
Banhegyi, G. Comparison of electrical mixture rules for composites. Colloid Polym. Sci. 1986, 264, 1030–1050, doi:10.1007/BF01410321.
[101]
Dlubek, G. Positron Annihilation Spectroscopy. In Encyclopedia of Polymer Science and Technology; Seidel, A., Ed.; Wiley: Hoboken, NJ, USA, 2008.
[102]
Dlubek, G. Local free-free volume distributions from PALS and dynamics of polymers. In Polymer Physics: From Suspensions to Nanocomposites to Beyond; Utracki, L.A., Jamieson, A.M., Eds.; Wiley: New York, NJ, USA, 2010. Chapter 11.
[103]
Liu, M.; Wong-Foy, A.G.; Vallery, R.S.; Frieze, W.E.; Schnobrich, J.K.; Gidley, D.W.; Matzger, A.J. Evolution of nanoscale pore structure in coordination polymers during thermal and chemical exposure revealed by positron annihilation. Adv. Mater. 2010, 22, 1598–1601, doi:10.1002/adma.200903618.