Ceramics, which exhibit high proton conductivity at moderate temperatures, are studied as electrolyte membranes or electrode components of fuel cells, electrolysers or CO 2 converters. In severe operating conditions (high gas pressure/high temperature), the chemical activity towards potentially reactive atmospheres (water, CO 2, etc.) is enhanced. This can lead to mechanical, chemical, and structural instability of the membranes and premature efficiency loss. Since the lifetime duration of a device determines its economical interest, stability/aging tests are essential. Consequently, we have developed autoclaves equipped with a sapphire window, allowing in situ Raman study in the 25–620 °C temperature region under 1–50 bar of water vapor/gas pressure, both with and without the application of an electric field. Taking examples of four widely investigated perovskites (BaZr 0.9Yb 0.1O 3?δ, SrZr 0.9Yb 0.1O 3?δ, BaZr 0.25In 0.75O 3?δ, BaCe 0.5Zr 0.3Y 0.16Zn 0.04O 3?δ), we demonstrate the high potential of our unique set-up to discriminate between good/stable and instable electrolytes as well as the ability to detect and monitor in situ: (i) the sample surface reaction with surrounding atmospheres and the formation of crystalline or amorphous secondary phases (carbonates, hydroxides, hydrates, etc.); and (ii) the structural modifications as a function of operating conditions. The results of these studies allow us to compare quantitatively the chemical stability versus water (corrosion rate from ~150 μm/day to less than 0.25 μm/day under 200–500 °C/15–80 bar P H2O) and to go further in comprehension of the aging mechanism of the membrane.
References
[1]
Forrat, F.; Dauge, G.; Trevoux, P.; Danner, G.; Christan, M. Electrolyte solide a base de AlLaO3 application aux piles à combustible. Acad. Sci. Paris 1964, 259, 2813–2816. (in French).
[2]
Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981, 3/4, 359–363.
[3]
Colomban, Ph. Proton Conductors Solids, Membranes and Gel—Materials and Devices; Cambridge University Press: Cambridge, UK, 1992.
[4]
Olah, G.A. Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2649.
[5]
Ni, M.; Leung, M.K.H.; Leung, D.Y.C. Energy and energy analysis of hydrogen production by solid oxide steam electrolyser plant. Int. J. Hydrog. Energy 2007, 32, 4648–4660.
[6]
Matsumoto, H.; Okada, S.; Hashimoto, S.; Sasaki, K.; Yamamoto, R.; Enoki, M.; Ishihara, T. Hydrogen separation from Syngas using high-temperature proton conductors. Ionics 2007, 13, 93–99.
[7]
Blum, P.; Deportes, C.; Schouler, E. Production d’hydrogène par réduction électrochimique de la vapeur d’eau à haute température. Rev. Générale d’Electr. 1976, 85, 1–11. (in French).
[8]
Iwahara, H.; Uchida, H.; Yamasaki, I. High-temperature steam electrolysis using SrCeO3-based proton conductive solid electrolyte. Int. J. Hydrog. Energy 1987, 2, 73–77, doi:10.1016/0360-3199(87)90082-6.
[9]
Kobayashi, T.; Abe, K.; Ukyo, Y.; Matsumoto, H. Study on current efficiency of steam electrolysis using a partial protonic conductor SrZr0.9Yb0.1O3?δ. Solid State Ion. 2001, 138, 243–251.
[10]
Nowick, A.S.; Du, Y. High-temperature protonic conductors with perovskite-related structures. Solid State Ion. 1995, 77, 137–146.
Schober, T.; Bohn, H.G. Water vapour solubility and electrochemical characterization of the high temperature proton conductor SrZr0.9Y0.1O2.95. Solid State Ion. 2000, 127, 351–356, doi:10.1016/S0167-2738(99)00283-0.
[13]
Tao, S.; Irvine, J.T.S.; Kilner, J.A. An efficient solid oxide fuel cell based upon single-phase perovskites. Adv. Mater. 2005, 17, 1734–1742.
[14]
Irvine, J.T.S.; Corcoran, D.J.D.; Lashtabeg, A.; Walton, J.C. Incorporation of molecular species into the vacancies of perovskite oxides. Solid State Ion. 2002, 154–155, 447–453.
[15]
Ricote, S.; Bonanos, N.; Caboche, G. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9?x)ZrxY0.1O3?δ. Solid State Ion. 2009, 180, 990–997.
[16]
Norby, T. Proton conduction in solids: Bulk and interfaces. MRS Bull. 2009, 34, 923–928, doi:10.1557/mrs2009.214.
[17]
Colomban, Ph. Latest developments in proton conductors. Ann. Chim. Sci. Matér. Paris 1999, 24, 1–18.
[18]
Malavasi, L.; Fisher, C.A.J.; Islam, M.S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem. Soc. Rev. 2010, 39, 4370–4387, doi:10.1039/b915141a.
[19]
Sala, B.; Lacroix, O.; Willemin, S.; Rhamouni, K.; Takenouti, H.; van der Lee, A.; Goeuriot, P.; Bendjeriou, B.; Colomban, Ph. Procédé d’Optimisation de la Conduction Ionique d’une Membrane Conductrice Ionique(in French). WO Patent 2008/152317 A2, 18 December 2008.
[20]
Sala, B.; Grasset, F.; Lacroix, O.; Sirat, A.; Rhamouni, K.; Keddam, M.; Takenouti, H.; Goeuriot, D.; Bendjeriou, B.; Colomban, Ph.; et al. Procédé de Génération d’hydrogène par électrolyse de Vapeur(in French). French Patent FR 1159221, 12 November 2011.
[21]
Communiqué de presse, CNRS. Vers une production massive et économique d’hydrogène(in French). Available online: http://www2.cnrs.fr/presse/communique/1570.htm (accessed on 29 July 2013).
[22]
Philibert, J.M. Atoms Movements: Diffusion and Mass Transport in Solids; EDP Sciences: Orsay, France, 1991.
[23]
Colomban, Ph.; Slodczyk, A. The structural and dynamics neutron study of proton conductors: Difficulties and improvement procedures in protonated perovskite. Eur. Phys. J. Spec. Top. 2012, 213, 171–193, doi:10.1140/epjst/e2012-01670-7.
[24]
Knauth, Ph.; di Vona, M.L. Solid State Proton Conductors: Properties and Applications in Fuel Cells; John Wiley & Sons: Chichester, UK, 2012.
[25]
Colomban, Ph.; Zaafrani, O.; Slodczyk, A. Proton content and nature in perovskite ceramic membranes for medium temperature fuel cells and electrolysers. Membranes 2012, 2, 493–509, doi:10.3390/membranes2030493.
[26]
Grimaud, A.; Bassat, J.M.; Mauvy, F.; Simon, P.; Canizares, A.; Rousseau, B.; Marrony, M.; Grenier, J.C. Transport properties and in-situ Raman spectroscopy study of BaCe0.9Y0.1O3?δ as a function of water partial pressures. Solid State Ion. 2011, 191, 24–31.
[27]
Chen, Q.; Huang, T.W.; Baldini, M.; Hushur, A.; Pomjakushin, A.; Clark, S.; Mao, W.; Manghnani, M.; Braun, A.; Graule, T. The Effect of compressive strain on the raman modes of the dry and hydrated BaCe0.8Y0.2O3 proton conductor. J. Phys. Chem. C 2011, 115, 24021–24027, doi:10.1021/jp208525j.
[28]
Giannici, F.; Shirpour, M.; Longo, A.; Martorana, A.; Merkle, M.; Maier, J. Long-Range and short-range structure of proton-conducting Y:BaZrO3. Chem. Mater. 2011, 23, 2994–3002, doi:10.1021/cm200682d.
[29]
Tan, W.Y.; Zhong, Q.; Miao, M.S.; Qu, H.X. H2S Solid oxide fuel cell based on a modified Barium cerate perovskite proton conductor. Ionics 2009, 15, 385–388, doi:10.1007/s11581-008-0278-0.
[30]
Dumortier, M.; Sanchez, J.; Keddam, M.; Lacroix, O. Energy transport inside a three-phase electrode and application to a proton-conducting solid oxide electrolysis cell. Int. J. Hydrog. Energy 2013, 38, 2610–2623, doi:10.1016/j.ijhydene.2012.12.044.
[31]
Shimura, T.; Tanaka, H.; Matsumoto, H.; Yogo, T. Influence of the transition metal doping on conductivity of a BaCeO3-based protonic conductor. Solid State Ion. 2005, 176, 2945–2950, doi:10.1016/j.ssi.2005.09.027.
[32]
Ricote, S.; Bonanos, N.; Marco de Lucas, M.C.; Caboche, G. Structural and conductivity study of the proton conductors BaCe(0.9?x)ZrxY0.1O3?δ. J. Power Sources 2009, 193, 189–193, doi:10.1016/j.jpowsour.2008.11.080.
[33]
Babilo, P.; Uda, T.; Haile, S.M. Proceesing of ytrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 2007, 22, 1322–1330, doi:10.1557/jmr.2007.0163.
[34]
Chen, C.T.; Danel, C.E.; Kim, S. On the origin of blocking effect of grain boundaries on proton transport in yttrium doped barium zirconate. J. Mater. Chem. 2011, 21, 5435–5442, doi:10.1039/c0jm03353g.
[35]
Iguchi, F.; Sata, N.; Tsurui, T.; Yugami, H. Microstructure and grain boundary conductivity of BaZr1?xYxO3 ceramics. Solid State Ion. 2007, 178, 691–695.
[36]
Dailly, J.; Marrony, M. BCY-based proton conducting ceramic cell: 1000 h of long term testing in fuel cell application. J. Power Sources 2013, 240, 323–327, doi:10.1016/j.jpowsour.2013.04.028.
[37]
Slodczyk, A.; Colomban, Ph.; Willemin, S.; Lacroix, O.; Sala, B. Indirect Raman identification of the proton insertion in the high temperature [Ba/Sr][Zr/Ti]O3 modified perovskite protonic conductors. J. Raman Spectrosc. 2009, 40, 513–521, doi:10.1002/jrs.2157.
[38]
Slodczyk, A.; Colomban, Ph.; André, G.; Zaafrani, O.; Grasset, F.; Lacroix, O.; Sala, B. Structural modifications induced by free proton in proton conducting perovskite ceramic membrane. Solid State Ion. 2012, 225, 214–218, doi:10.1016/j.ssi.2012.01.023.
[39]
Slodczyk, A.; Colomban, Ph.; Lamago, D.; André, G.; Zaafrani, O.; Lacroix, O.; Sirat, A.; Grasset, F.; Sala, B. Optimum temperature range for the proton dynamics in H-doped BaZrO3:Yb dense ceramics—A neutron scattering study. J. Mater. Res. 2012, 27, 1939–1949, doi:10.1557/jmr.2012.180.
[40]
Colomban, Ph.; Slodczyk, A.; Lamago, D.; André, G.; Zaafrani, O.; Lacroix, O.; Willemin, S.; Sala, B. Proton dynamics and structural modifications in the protonic conductor perovskites. J. Phys. Soc. Jpn. 2010, 79, 1–16, doi:10.1143/JPSJS.79SA.1.
[41]
Slodczyk, A.; Limage, M.H.; Colomban, Ph.; Zaafrani, O.; Grasset, F.; Loricourt, J.; Sala, B. Substitution and proton doping effect on SrZrO3 behavior: High-pressure Raman study. J. Raman Spectrosc. 2011, 42, 2089–2099, doi:10.1002/jrs.2968.
[42]
Colomban, Ph.; Tran, C.; Zaafrani, O.; Slodczyk, A. Aqua oxyhydroxycarbonate second phases at the surface of Ba/Sr-based proton conducting perovskites: A source of confusion in the understanding of proton conduction. J. Raman Spectrosc. 2013, 44, 312–320, doi:10.1002/jrs.4179.
[43]
Slodczyk, A.; Zaafrani, O.; Colomban, Ph. High water pressure–high temperature autoclave for in situ Raman study of fuel cell/electrolyser materials. MRS Proc. 2012, 1385. mrsf11–1385-c02–03, doi:10.1557/opl.2012.821.
[44]
Tu, C.-S.; Chien, R.R.; Schmidt, V.H.; Lee, S.C.; Huang, C.-C. Temperature-dependent structures of proton-conducting Ba(Zr0.8?xCexY0.2)O2.9 ceramics by Raman scattering and X-ray diffraction. J. Phys. Condens. Matter 2012, 24, 155403, doi:10.1088/0953-8984/24/15/155403.
[45]
Pasto, A.E.; Condrate, R.A. The laser Raman spectra of several perovskite zirconates. In Advanced Spectroscopy; Mathieu, J.P., Ed.; Heyden & Sons Ltd.: London, UK, 1973. Chapter 24; pp. 196–203.
[46]
Genet, F.; Loridant, S.; Lucazeau, G. Vibrational normal modes of the D-2h(16) phase of BaCeO3: A critical comparison of force fields. J. Raman Spectrosc. 1997, 28, 255–276, doi:10.1002/(SICI)1097-4555(199704)28:4<255::AID-JRS95>3.0.CO;2-F.
[47]
Slodczyk, A.; Colomban, Ph. Probing the nanodomain origin and phase transition mechanisms in (Un)Poled PMN-PT single crystals and textured ceramics. Materials 2010, 3, 5007–5028, doi:10.3390/ma3125007.
[48]
Zelenovskiy, P.S.; Fontana, M.D.; Shur, V.Y.; Bourson, P.; Kuznetsov, D.K. Raman visualization of micro- and nanoscale domain structures in lithium niobate. Appl. Phys. A 2010, 99, 741–744, doi:10.1007/s00339-010-5621-4.
[49]
Colomban, Ph.; Romain, F.; Neiman, A.; Animitsa, I. Double perovskites with oxygen structural vacancies: Raman spectra, conductivity and water uptake. Solid State Ion. 2001, 145, 339–347, doi:10.1016/S0167-2738(01)00929-8.
[50]
Gouadec, G.; Colomban, Ph. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 2007, 53, 1–56, doi:10.1016/j.pcrysgrow.2007.01.001.
[51]
Lucazeau, G. Effect of pressure and temperature on Raman spectra of solids: Anharmonicity. J. Raman Spectrosc. 2003, 34, 478–496, doi:10.1002/jrs.1027.
[52]
Chemarin, C.; Rosman, N.; Pagnier, T.; Lucazeau, G. A high-pressure raman study of mixed perovskites BaCexZr1?xO3 (0 ≤ x ≤ 1). J. Solid State Chem. 2000, 149, 298–307, doi:10.1006/jssc.1999.8530.
[53]
Colomban, Ph.; Slodczyk, A. Raman intensity: An important tool to study the structure and phase transitions of amorphous/crystalline materials. Opt. Mater. 2009, 31, 1759–1763, doi:10.1016/j.optmat.2008.12.030.
[54]
Slodczyk, A.; Dabrowski, B.; Malikova, N.; Colomban, Ph. Origins of rapid aging of Ba-based proton conducting perovskites. MRS Proc. 2011, 1311. mrsf10–1311-gg06–25, doi:10.1557/opl.2011.107.
[55]
Irvine, J.T.S.; Tao, S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolysers. Adv. Mater. 2006, 18, 1581–1586, doi:10.1002/adma.200502098.
[56]
Zaafrani, O. Protonation, Distorsions Structurales et espèces Protoniques Dans des Perovskites Lacunaires. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 20 December 2010. (in French).
[57]
Bendjeriou-Sedjerari, B.; Loricourt, J.; Goeuriot, D.; Goeuriot, P. Sintering of BaZrO3 and SrZrO3 perovskites: Role of substitutions by yttrium or ytterbium. J. Alloy. Compd. 2011, 509, 6175–6183, doi:10.1016/j.jallcom.2011.02.088.
[58]
Slodczyk, A.; Sharp, M.D.; Upasen, S.; Colomban, Ph.; Kilner, J.A. Combined bulk and surface analysis of the BaCe0.5Zr0.3Y0.16Zn0.04O3?δ (BCZYZ) ceramic proton-conducting electrolyte. Solid State Ion. 2013. submitted for publication.