A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 10 4. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h ?1 m ?2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h ?2 m ?2 bar ?1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m 3 day ?1 OMW-2 on average, 47.4 m 2 required membrane area and 0.87 € m ?3 total costs for the RO process were estimated.
References
[1]
Voreadou, K. Olive Mill Wastewater: A Trial for the Water Ecosystems. In Proceedings of Symposium on Treatment of Wastes from Olive Mills; Greek Agrotechnical Society: Heraklion, Greece, 1989.
[2]
Ochando-Pulido, J.M.; Hodaifa, G.; Victor-Ortega, M.D.; Rodriguez-Vives, S.; Martinez-Ferez, A. Effective treatment of olive mill effluents from two-phase and three-phase extraction processes by batch membranes in series operation upon threshold conditions. J. Hazard. Mater. 2013, doi:10.1016/j.jhazmat.2013.03.041.
[3]
Hodaifa, G.; Eugenia-Sánchez, M.; Sánchez, S. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 2008, 99, 1111–1117, doi:10.1016/j.biortech.2007.02.020.
[4]
De Heredia, J.B.; Garcia, J. Process integration: Continuous anaerobic digestion–ozonation treatment of olive mill wastewater. Ind. Eng. Chem. Res. 2005, 44, 8750–8755, doi:10.1021/ie040232x.
[5]
Nieto, L.M.; Hodaifa, G.; Rodríguez, S.; Giménez, J.A.; Ochando, J. Degradation of organic matter in olive oil mill wastewater through homogeneous Fenton-like reaction. Chem. Eng. J. 2011, 173, 503–510, doi:10.1016/j.cej.2011.08.022.
[6]
Hodaifa, G.; Ochando-Pulido, J.M.; Rodriguez-Vives, S.; Martinez-Ferez, A. Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem. Eng. J. 2013, 220, 117–124, doi:10.1016/j.cej.2013.01.065.
[7]
Stoller, M.; Bravi, M. Critical flux analyses on differently pretreated olive vegetation wastewater streams: Some case studies. Desalination 2010, 250, 578–582, doi:10.1016/j.desal.2009.09.027.
[8]
De Caprariis, B.; Di Rita, M.; Stoller, M.; Verdone, N.; Chianese, A. Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production. Chem. Eng. Sci. 2012, 76, 73–80, doi:10.1016/j.ces.2012.03.043.
[9]
Sacco, O.; Stoller, M.; Vaiano, V.; Ciambelli, P.; Chianese, A.; Sannino, D. Photocatalytic degradation of organic dyes under visible light on n-doped photocatalysts. Int. J. Photoenergy 2012, 2012, 626759:1–626759:8.
[10]
Papastefanakis, N.; Mantzavinos, D.; Katsaounis, A. DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode. J. Appl. Electrochem. 2010, 40, 729–737, doi:10.1007/s10800-009-0050-9.
[11]
Altay, U.; Koparal, A.S.; Ogutveren, U.B. Complete treatment of olive mill wastewaters by electrooxidation. Chem. Eng. J. 2008, 139, 445–452, doi:10.1016/j.cej.2007.08.009.
[12]
Ca?izares, P.; Martinez, L.; Paz, R.; Saéz, C.; Lobato, J.; Rodrigo, M.A. Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. J. Chem. Technol. Biotechnol. 2006, 81, 1331–1337, doi:10.1002/jctb.1428.
[13]
Grafias, P.; Xekoukoulotakis, N.P.; Mantzavinos, D.; Diamadopoulos, E. Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: An efficient hybrid process. Water Res. 2010, 44, 2773–2780, doi:10.1016/j.watres.2010.02.015.
[14]
Lafi, W.K.; Shannak, B.; Al-Shannag, M.; Al-Anber, Z.; Al-Hasan, M. Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Sep. Purif. Technol. 2009, 70, 141–146, doi:10.1016/j.seppur.2009.09.008.
[15]
Khoufi, S.; Aloui, F.; Sayadi, S. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion. Water Res. 2006, 40, 2007–2016, doi:10.1016/j.watres.2006.03.023.
[16]
Rizzo, L.; Lofrano, G.; Grassi, M.; Belgiorno, V. Pretreatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Sep. Purif. Technol. 2008, 63, 648–653, doi:10.1016/j.seppur.2008.07.003.
[17]
Iaquinta, M.; Stoller, M.; Merli, C. Optimization of a nanofiltration membrane for tomato industry wastewater treatment. Desalination 2009, 245, 314–320, doi:10.1016/j.desal.2008.05.028.
[18]
Ochando-Pulido, J.M.; Martinez-Ferez, A. A focus on pressure-driven membrane technology in olive mill wastewater reclamation: State of the art. Water Sci. Technol. 2012, 66, 2505–2516, doi:10.2166/wst.2012.506.
[19]
Greenberg, A.E.; Clesceri, L.S.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 16th ed. ed.; APHA/AWWA/WEF: Washington, DC, USA, 1992.
[20]
Ochando-Pulido, J.M.; Rodriguez-Vives, S.; Martinez-Ferez, A. The effect of permeate recirculation on the depuration of pretreated olive mill wastewater through reverse osmosis membranes. Desalination 2012, 286, 145–154, doi:10.1016/j.desal.2011.10.041.
[21]
Ochando-Pulido, J.M.; Hodaifa, G.; Rodriguez-Vives, S.; Martinez-Ferez, A. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater. Water Res. 2012, 46, 4621–4632, doi:10.1016/j.watres.2012.06.026.
[22]
Nieto, L.M.; Hodaifa, G.; Rodríguez, S.; Giménez, J.A.; Ochando, J. Flocculation-sedimentation combined with chemical oxidation process. CleanSoil Air Water 2011, 39, 949–955, doi:10.1002/clen.201000594.
[23]
Nieto, L.M.; Alami, S.B.D.; Hodaifa, G.; Faur, C.; Rodríguez, S.; Giménez, J.A.; Ochando, J. Adsorption of iron on crude olive stones. Ind. Crops Prod. 2010, 32, 467–471, doi:10.1016/j.indcrop.2010.06.017.
[24]
Yiantsios, S.G.; Karabelas, A.J. An assessment of the Silt Density Index based on RO membrane colloidal fouling experiments with iron oxide particles. Desalination 2002, 15l, 229–238.
[25]
Vincent-Vela, M.C.; Cuartas-Uribe, B.; álvarez-Blanco, S.; Lora-García, J. Analysis of fouling resistances under dynamic membrane filtration. Chem. Eng. Process. 2011, 50, 404–408, doi:10.1016/j.cep.2011.02.010.
[26]
Sioutopoulos, D.C.; Yiantsios, S.G.; Karabelas, A.J. Relation between fouling characteristics of RO and UF membranes in experiments with colloidal organic and inorganic species. J. Membr. Sci. 2010, 350, 62–82, doi:10.1016/j.memsci.2009.12.012.
[27]
Field, R.W.; Pearce, G.K. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 2011, 164, 38–44, doi:10.1016/j.cis.2010.12.008.
[28]
Stoller, M. Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chem. Eng. J. 2011, 168, 1140–1148, doi:10.1016/j.cej.2011.01.098.
[29]
Stoller, M.; Ochando-Pulido, J.M. Going from a critical flux concept to a threshold flux concept on membrane processes treating olive mill wastewater streams. Procedia Eng. 2012, 44, 607–608, doi:10.1016/j.proeng.2012.08.500.
[30]
Stoller, M.; Bravi, M.; Chianese, A. Threshold flux measurements of a nanofiltration membrane module by critical flux data conversion. Desalination 2013, 315, 142–148, doi:10.1016/j.desal.2012.11.013.
[31]
Stoller, M.; de Caprariis, B.; Cicci, A.; Verdone, N.; Bravi, M.; Chianese, A. About proper membrane process design affected by fouling by means of the analysis of measured threshold flux data. Sep. Purif. Technol. 2013, 114, 83–89, doi:10.1016/j.seppur.2013.04.041.
[32]
Stoller, M.; Chianese, A. Optimization of membrane batch processes by means of the critical flux theory. Desalination 2006, 191, 62–70, doi:10.1016/j.desal.2005.07.021.
[33]
Stoller, M.; Chianese, A. Influence of the adopted pretreatment process on the critical flux value of batch membrane processes. Ind. Eng. Chem. Res. 2007, 46, 2249–2253, doi:10.1021/ie060964k.
[34]
Ca?izares, P.; Paz, R.; Sáez, C.; Rodrigo, M.A. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J. Environ. Manag. 2009, 90, 410–420, doi:10.1016/j.jenvman.2007.10.010.