The mechanisms by which natural dietary compounds exert their antitumor effects have been the focus of a large number of research efforts in recent years. Induction of apoptosis by inhibition of cell proliferative pathways is one of the common means of cell death employed by these dietary compounds. However, agents that can activate an antitumor immune response in addition to a chemotherapeutic effect may be useful adjuvants or alternative therapies for the treatment of cancer. The focus of this review is to highlight representative dietary compounds, namely Withania somnifera, Panax ginseng, curcumin and resveratrol with special emphasis on their antitumor immune mechanism of action. Each of these dietary compounds and their sources has a history of safe human use as food or in herbal medicine traditions, potentially making them ideal therapeutics. Here we report the recent advances in the cellular immune mechanisms utilized by these compounds to induce antitumor immunity. Taken together, these findings provide a new perspective for exploiting novel dietary compounds as chemoimmunotherapeutic anti-cancer agents.
References
[1]
Ehrlich, P. Ueber den jetzigen stand der karzinomforschung. J. Am. Chem. Soc. 1909, 42, 17–47. (in German).
[2]
Burnet, M. Cancer: A biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br. Med. J. 1957, 1, 841–847, doi:10.1136/bmj.1.5023.841.
[3]
Thomas, L. Cellular and Humoral Aspects of the Hypersensitive States; Lawrence, H., Ed.; Hoeber-Harper: New York, NY, USA, 1959.
[4]
Vajdic, C.M.; van Leeuwen, M.T. Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer 2009, 125, 1747–1754, doi:10.1002/ijc.24439.
[5]
Jessy, T. Immunity over inability: The spontaneous regression of cancer. J. Nat. Sci. Biol. Med. 2011, 2, 43–49, doi:10.4103/0976-9668.82318.
[6]
Disis, M.L.; Calenoff, E.; McLaughlin, G.; Murphy, A.E.; Chen, W.; Groner, B.; Jeschke, M.; Lydon, N.; McGlynn, E.; Livingston, R.B.; et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 1994, 54, 16–20.
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994, 12, 991–1045, doi:10.1146/annurev.iy.12.040194.005015.
[10]
Lindauer, M.; Stanislawski, T.; Haussler, A.; Antunes, E.; Cellary, A.; Huber, C.; Theobald, M. The molecular basis of cancer immunotherapy by cytotoxic T lymphocytes. J. Mol. Med. 1998, 76, 32–47, doi:10.1007/s109-1998-8102-9.
[11]
Shresta, S.; Pham, C.T.; Thomas, D.A.; Graubert, T.A.; Ley, T.J. How do cytotoxic lymphocytes kill their targets? Curr. Opin. Immunol. 1998, 10, 581–587, doi:10.1016/S0952-7915(98)80227-6.
[12]
Pardoll, D.M.; Topalian, S.L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol. 1998, 10, 588–594, doi:10.1016/S0952-7915(98)80228-8.
Schultze, J.L.; Michalak, S.; Seamon, M.J.; Dranoff, G.; Jung, K.; Daley, J.; Delgado, J.C.; Gribben, J.G.; Nadler, L.M. CD40-activated human B cells: An alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J. Clin. Investig. 1997, 100, 2757–2765, doi:10.1172/JCI119822.
[18]
DiLillo, D.J.; Yanaba, K.; Tedder, T.F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: Therapeutic B cell depletion enhances b16 melanoma growth in mice. J. Immunol. 2010, 184, 4006–4016, doi:10.4049/jimmunol.0903009.
[19]
Fauriat, C.; Long, E.O.; Ljunggren, H.G.; Bryceson, Y.T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 2010, 115, 2167–2176, doi:10.1182/blood-2009-08-238469.
[20]
Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510, doi:10.1038/ni1582.
[21]
Haridas, V.; Sarin, A.; Anandhi, R.; Kochupillai, V.; Saxena, R.K. Effect of gamma interferon on the expression of class i mhc antigens on fresh leukemic cells and their susceptibility to lysis by lymphokine activated killer cells. Indian J. Cancer 1994, 31, 96–102.
[22]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674, doi:10.1016/j.cell.2011.02.013.
[23]
Becker, J.C.; Andersen, M.H.; Schrama, D.; Thor Straten, P. Immune-suppressive properties of the tumor microenvironment. Cancer Immunol. Immunother. 2013, 62, 1137–1148, doi:10.1007/s00262-013-1434-6.
[24]
Bubenik, J. MHC class I down-regulation: Tumour escape from immune surveillance? (review). Int. J. Oncol. 2004, 25, 487–491.
[25]
Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA 2002, 99, 12293–12297, doi:10.1073/pnas.192461099.
[26]
Rozali, E.N.; Hato, S.V.; Robinson, B.W.; Lake, R.A.; Lesterhuis, W.J. Programmed death ligand 2 in cancer-induced immune suppression. Clin. Dev. Immunol. 2012, doi:10.1155/2012/656340.
[27]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489, doi:10.1038/nature10673.
[28]
Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006, 6, 295–307, doi:10.1038/nri1806.
[29]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174, doi:10.1038/nri2506.
[30]
Mishra, L.C.; Singh, B.B.; Dagenais, S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern. Med. Rev. 2000, 5, 334–346.
[31]
Begum, V.H.; Sadique, J. Long term effect of herbal drug Withania somnifera on adjuvant induced arthritis in rats. Indian J. Exp. Biol. 1988, 26, 877–882.
[32]
Devi, P.U. Withania somnifera dunal (ashwagandha): Potential plant source of a promising drug for cancer chemotherapy and radiosensitization. Indian J. Exp. Biol. 1996, 34, 927–932.
[33]
Agnihotri, A.P.; Sontakke, S.D.; Thawani, V.R.; Saoji, A.; Goswami, V.S. Effects of Withania somnifera in patients of schizophrenia: A randomized, double blind, placebo controlled pilot trial study. Indian J. Pharmacol. 2013, 45, 417–418, doi:10.4103/0253-7613.115012.
[34]
Withaferin A—Compound Summary (CID 265237). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=265237&loc=ec_rcs#x395/ (accessed on 8 October 2013).
[35]
3-Rhamnopyranosyl(1-4)-Glucopyranosyl-12-Diacetoxy-20-Hydroxywitha-5,24-Dienolide—Compound Summary (CID 11294368). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=11294368&loc=ec_rcs/ (accessed on 8 October 2013).
[36]
Withanolide D—Substance Summary (SID 163725462). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=163725462&loc=es_rss/ (accessed on 8 October 2013).
[37]
27-Hydroxywithanolide B—Substance Summary (SID 162251743). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=162251743#x395/ (accessed on 8 October 2013).
[38]
Vyas, A.R.; Singh, S.V. Molecular targets and mechanisms of cancer prevention and treatment by Withaferin A, a naturally occurring steroidal lactone. AAPS J. 2013, doi:10.1208/s12248-013-9531-1.
[39]
Kour, K.; Pandey, A.; Suri, K.A.; Satti, N.K.; Gupta, K.K.; Bani, S. Restoration of stress-induced altered T cell function and corresponding cytokines patterns by withanolide A. Int. Immunopharm. 2009, 9, 1137–1144, doi:10.1016/j.intimp.2009.05.011.
[40]
Malik, F.; Singh, J.; Khajuria, A.; Suri, K.A.; Satti, N.K.; Singh, S.; Kaul, M.K.; Kumar, A.; Bhatia, A.; Qazi, G.N. A standardized root extract of Withania somnifera and its major constituent withanolide-a elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci. 2007, 80, 1525–1538, doi:10.1016/j.lfs.2007.01.029.
[41]
Malik, F.; Kumar, A.; Bhushan, S.; Mondhe, D.M.; Pal, H.C.; Sharma, R.; Khajuria, A.; Singh, S.; Singh, G.; Saxena, A.K.; et al. Immune modulation and apoptosis induction: Two sides of antitumoural activity of a standardised herbal formulation of Withania somnifera. Eur. J. Cancer 2009, 45, 1494–1509, doi:10.1016/j.ejca.2009.01.034.
[42]
Davis, L.; Kuttan, G. Effect of Withania somnifera on cell mediated immune responses in mice. J. Exp. Clin. Cancer Res. 2002, 21, 585–590.
[43]
Shohat, B.; Joshua, H. Effect of Withaferin A on ehrlich ascites tumor cells. II. Target tumor cell destruction in vivo by immune activation. Int. J. Cancer 1971, 8, 487–496.
[44]
Smith, A.R.; Lopez-Rodriguez, D.; Andreansky, S. Withaferin A, a natural plant derived compound targets the stress pathway to induce antitumor immunity. Cancer Res. 2013. submitted for publication.
[45]
Inoue, H.; Tani, K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 2013, 21, 39–49, doi:10.1038/cdd.2013.84.
[46]
Sinha, P.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunol. Immunother. 2013, 62, 1663–1673, doi:10.1007/s00262-013-1470-2.
[47]
Hu, S.Y. A contribution to our knowledge of ginseng. Am. J. Chin. Med. 1977, 5, 1–23, doi:10.1142/S0192415X77000026.
[48]
Tao, H.C. Shen-Nung-Pen-Tsao-Ching. (in German); Chung Hwa: Taipei, Taiwan, 1955.
[49]
Translated and Summarized in Hsu, H.Y. Oriental Materia Medica: A Precise Guide; Oriental Healing Arts Institute: Long Beach, CA, USA, 1986.
[50]
Yun, T.K. Brief introduction of Panax ginseng C.A. Meyer. J. Kor. Med. Sci. 2001, 16, S3–S5.
[51]
Ginsenoside RG1—Substance Summary (SID 53786785). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=53786785&viewopt=PubChem/ (accessed on 8 October 2013).
[52]
Ginsenoside Rd Mxture w/Re—Substance Summary (SID 8141082). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=8141082&viewopt=PubChem/ (accessed on 8 October 2013).
[53]
Ginsenoside Rf—Compound Summary (CID 441922). Available online: http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pccompound&term=441922[uid]/ (accessed on 8 October 2013).
[54]
Ginsenoside Rb1—Compound Summary (CID 9898279). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=9898279&loc=ec_rcs/ (accessed on 8 October 2013).
[55]
Ginsenoside Rb2—Compound Summary (CID 5458674). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5458674&loc=ec_rcs/ (accessed on 8 October 2013).
[56]
Ginsenoside Rc—Compound Summary (CID 100018). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=100018&loc=ec_rcs/ (accessed on 8 October 2013).
[57]
Kitagawa, I.; Yoshikawa, M.; Yoshihara, M.; Hayashi, T.; Taniyama, T. Chemical studies of crude drugs (1). Constituents of ginseng radix rubra. Yakugaku Zasshi 1983, 103, 612–622.
[58]
Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of korean Panax ginseng c a meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118, doi:10.1111/j.1745-7254.2008.00869.x.
[59]
Gao, Q.P.; Kiyohara, H.; Cyong, J.C.; Yamada, H. Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of Panax ginseng. Planta Med. 1989, 55, 9–12, doi:10.1055/s-2006-961765.
[60]
Kim, Y.S.; Kang, K.S.; Kim, S.I. Study on antitumor and immuno-modulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction. Arch. Pharm. Res. 1990, 13, 330–337, doi:10.1007/BF02858168.
[61]
Ni, W.; Zhang, X.; Wang, B.; Chen, Y.; Han, H.; Fan, Y.; Zhou, Y.; Tai, G. Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-fluorouracil. J. Med. Food 2010, 13, 270–277, doi:10.1089/jmf.2009.1119.
[62]
Lee, Y.S.; Chung, I.S.; Lee, I.R.; Kim, K.H.; Hong, W.S.; Yun, Y.S. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res. 1997, 17, 323–331.
[63]
Kim, K.H.; Lee, Y.S.; Jung, I.S.; Park, S.Y.; Chung, H.Y.; Lee, I.R.; Yun, Y.S. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 1998, 64, 110–115, doi:10.1055/s-2006-957385.
[64]
Shin, J.Y.; Song, J.Y.; Yun, Y.S.; Yang, H.O.; Rhee, D.K.; Pyo, S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol. Immunotoxicol. 2002, 24, 469–482, doi:10.1081/IPH-120014730.
[65]
Choi, H.S.; Kim, K.H.; Sohn, E.; Park, J.D.; Kim, B.O.; Moon, E.Y.; Rhee, D.K.; Pyo, S. Red ginseng acidic polysaccharide (RGAP) in combination with IFN-gamma results in enhanced macrophage function through activation of the NF-kappab pathway. Biosci. Biotechnol. Biochem. 2008, 72, 1817–1825, doi:10.1271/bbb.80085.
[66]
Park, D.; Bae, D.K.; Jeon, J.H.; Lee, J.; Oh, N.; Yang, G.; Yang, Y.H.; Kim, T.K.; Song, J.; Lee, S.H.; et al. Immunopotentiation and antitumor effects of a ginsenoside Rg(3)-fortified red ginseng preparation in mice bearing H460 lung cancer cells. Environ. Toxicol. Pharmacol. 2011, 31, 397–405, doi:10.1016/j.etap.2011.01.008.
[67]
Jeon, C.; Kang, S.; Park, S.; Lim, K.; Hwang, K.W.; Min, H. T cell stimulatory effects of korean red ginseng through modulation of myeloid-derived suppressor cells. J. Ginseng Res. 2011, 35, 462–470, doi:10.5142/jgr.2011.35.4.462.
[68]
Curcumin—Compound Summary (CID 969516). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=969516&loc=ec_rcs/ (accessed on 8 October 2013).
[69]
Demethoxycurcumin—Substance Summary (SID 162221237). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=162221237&viewopt=PubChem/ (accessed on 8 October 2013).
[70]
Bisdemethoxycurcumin—Substance Summary (SID 162220513). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=162220513&viewopt=PubChem/ (accessed on 8 October 2013).
[71]
Ammon, H.P.; Wahl, M.A. Pharmacology of curcuma longa. Planta Med. 1991, 57, 1–7, doi:10.1055/s-2006-960004.
[72]
Ali, T.; Shakir, F.; Morton, J. Curcumin and inflammatory bowel disease: Biological mechanisms and clinical implication. Digestion 2012, 85, 249–255, doi:10.1159/000336720.
[73]
Yu, W.G.; Xu, G.; Ren, G.J.; Xu, X.; Yuan, H.Q.; Qi, X.L.; Tian, K.L. Preventive action of curcumin in experimental acute pancreatitis in mouse. Indian J. Med. Res. 2011, 134, 717–724, doi:10.4103/0971-5916.91009.
Liu, J.; Chen, S.; Lv, L.; Song, L.; Guo, S.; Huang, S. Recent progress in studying curcumin and its nano-preparations for cancer therapy. Curr. Pharmaceut. Des. 2013, 19, 1974–1993.
[76]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809, doi:10.1016/j.bcp.2007.08.016.
[77]
Ni, X.; Zhang, A.; Zhao, Z.; Shen, Y.; Wang, S. Demethoxycurcumin inhibits cell proliferation, migration and invasion in prostate cancer cells. Oncol. Rep. 2012, 28, 85–90.
[78]
Huang, T.Y.; Hsu, C.W.; Chang, W.C.; Wang, M.Y.; Wu, J.F.; Hsu, Y.C. Demethoxycurcumin retards cell growth and induces apoptosis in human brain malignant glioma GBM 8401 cells. Evid. Based Complement Altern. Med. 2012, 2012, doi:10.1155/2012/396573.
Liu, Y.L.; Yang, H.P.; Zhou, X.D.; Gong, L.; Tang, C.L.; Wang, H.J. The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Curr. Cancer Drug Targets 2011, 11, 1098–1110, doi:10.2174/156800911798073041.
[81]
Basile, V.; Ferrari, E.; Lazzari, S.; Belluti, S.; Pignedoli, F.; Imbriano, C. Curcumin derivatives: Molecular basis of their anti-cancer activity. Biochem. Pharmacol. 2009, 78, 1305–1315, doi:10.1016/j.bcp.2009.06.105.
[82]
Varalakshmi, C.; Ali, A.M.; Pardhasaradhi, B.V.; Srivastava, R.M.; Singh, S.; Khar, A. Immunomodulatory effects of curcumin: In Vivo. Int. Immunopharm. 2008, 8, 688–700, doi:10.1016/j.intimp.2008.01.008.
[83]
Luo, F.; Song, X.; Zhang, Y.; Chu, Y. Low-dose curcumin leads to the inhibition of tumor growth via enhancing ctl-mediated antitumor immunity. Int. Immunopharm. 2011, 11, 1234–1240, doi:10.1016/j.intimp.2011.04.002.
[84]
Salvadori, S.; Gansbacher, B.; Pizzimenti, A.M.; Zier, K.S. Abnormal signal transduction by T cells of mice with parental tumors is not seen in mice bearing IL-2-secreting tumors. J. Immunol. 1994, 153, 5176–5182.
[85]
Otsuji, M.; Kimura, Y.; Aoe, T.; Okamoto, Y.; Saito, T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl. Acad. Sci. USA 1996, 93, 13119–13124, doi:10.1073/pnas.93.23.13119.
[86]
Gastman, B.R.; Johnson, D.E.; Whiteside, T.L.; Rabinowich, H. Tumor-induced apoptosis of T lymphocytes: Elucidation of intracellular apoptotic events. Blood 2000, 95, 2015–2023.
[87]
Ohm, J.E.; Carbone, D.P. Immune dysfunction in cancer patients. Oncology 2002, 16, 11–18.
Bhattacharyya, S.; Mandal, D.; Saha, B.; Sen, G.S.; Das, T.; Sa, G. Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J. Biol. Chem. 2007, 282, 15954–15964, doi:10.1074/jbc.M608189200.
[90]
Zhang, H.G.; Kim, H.; Liu, C.; Yu, S.; Wang, J.; Grizzle, W.E.; Kimberly, R.P.; Barnes, S. Curcumin reverses breast tumor exosomes mediated immune suppression of nk cell tumor cytotoxicity. Biochim. Biophys. Acta 2007, 1773, 1116–1123.
[91]
Bhattacharyya, S.; Mandal, D.; Sen, G.S.; Pal, S.; Banerjee, S.; Lahiry, L.; Finke, J.H.; Tannenbaum, C.S.; Das, T.; Sa, G. Tumor-induced oxidative stress perturbs nuclear factor-kappab activity-augmenting tumor necrosis factor-alpha-mediated T-cell death: Protection by curcumin. Cancer Res. 2007, 67, 362–370.
[92]
Liu, C.; Yu, S.; Zinn, K.; Wang, J.; Zhang, L.; Jia, Y.; Kappes, J.C.; Barnes, S.; Kimberly, R.P.; Grizzle, W.E.; et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J. Immunol. 2006, 176, 1375–1385.
[93]
Stuelten, C.H.; DaCosta Byfield, S.; Arany, P.R.; Karpova, T.S.; Stetler-Stevenson, W.G.; Roberts, A.B. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNV-alpha and TGF-beta. J. Cell. Sci. 2005, 118, 2143–2153, doi:10.1242/jcs.02334.
[94]
Chang, Y.F.; Chuang, H.Y.; Hsu, C.H.; Liu, R.S.; Gambhir, S.S.; Hwang, J.J. Immunomodulation of curcumin on adoptive therapy with T cell functional imaging in mice. Cancer Prev. Res. 2012, 5, 444–452, doi:10.1158/1940-6207.CAPR-11-0308.
[95]
Fallarino, F.; Grohmann, U.; Puccetti, P. Indoleamine 2,3-dioxygenase: From catalyst to signaling function. Euro. J. Immunol. 2012, 42, 1932–1937, doi:10.1002/eji.201242572.
[96]
Tu, S.P.; Jin, H.; Shi, J.D.; Zhu, L.M.; Suo, Y.; Lu, G.; Liu, A.; Wang, T.C.; Yang, C.S. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev. Res. 2012, 5, 205–215.
[97]
Zhao, G.J.; Lu, Z.Q.; Tang, L.M.; Wu, Z.S.; Wang, D.W.; Zheng, J.Y.; Qiu, Q.M. Curcumin inhibits suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. Int. Immunopharm. 2012, 14, 99–106, doi:10.1016/j.intimp.2012.06.016.
[98]
Resveratrol—Substance Summary (SID 164216570). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=164216570&viewopt=PubChem/ (accessed on 8 October 2013).
[99]
cis-Resveratrol—Substance Summary (SID 164233321). Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=164233321&viewopt=PubChem/ (accessed on 8 October 2013).
[100]
Sanders, T.H.; McMichael, R.W., Jr.; Hendrix, K.W. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 2000, 48, 1243–1246, doi:10.1021/jf990737b.
[101]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340, doi:10.1021/jf0112973.
[102]
Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; van Breemen, R.B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem. 2002, 50, 431–435, doi:10.1021/jf010812u.
[103]
Lyons, M.M.; Yu, C.; Toma, R.B.; Cho, S.Y.; Reiboldt, W.; Lee, J.; van Breemen, R.B. Resveratrol in raw and baked blueberries and bilberries. J. Agric. Food Chem. 2003, 51, 5867–5870, doi:10.1021/jf034150f.
[104]
Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem. Toxicol. 2013, 61, 215–226, doi:10.1016/j.fct.2013.07.021.
[105]
Clarke, J.O.; Mullin, G.E. A review of complementary and alternative approaches to immunomodulation. Nutr. Clin. Pract. 2008, 23, 49–62, doi:10.1177/011542650802300149.
[106]
Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev. 2008, 66, 445–454, doi:10.1111/j.1753-4887.2008.00076.x.
[107]
Li, T.; Fan, G.X.; Wang, W.; Li, T.; Yuan, Y.K. Resveratrol induces apoptosis, influences IL-6 and exerts immunomodulatory effect on mouse lymphocytic leukemia both in vitro and in vivo. Int. Immunopharm. 2007, 7, 1221–1231, doi:10.1016/j.intimp.2007.05.008.
[108]
Bergman, M.; Levin, G.S.; Bessler, H.; Djaldetti, M.; Salman, H. Resveratrol affects the cross talk between immune and colon cancer cells. Biomed. Pharmacother. 2013, 67, 43–47, doi:10.1016/j.biopha.2012.10.008.
[109]
Yang, Y.; Paik, J.H.; Cho, D.; Cho, J.A.; Kim, C.W. Resveratrol induces the suppression of tumor-derived CD4+CD25+ regulatory t cells. Int. Immunopharm. 2008, 8, 542–547, doi:10.1016/j.intimp.2007.12.006.
[110]
Guan, H.; Singh, N.P.; Singh, U.P.; Nagarkatti, P.S.; Nagarkatti, M. Resveratrol prevents endothelial cells injury in high-dose interleukin-2 therapy against melanoma. PLoS One 2012, 7, e35650.
[111]
Takikawa, O.; Habara-Ohkubo, A.; Yoshida, R. IFN-gamma is the inducer of indoleamine 2,3-dioxygenase in allografted tumor cells undergoing rejection. J. Immunol. 1990, 145, 1246–1250.
[112]
Noh, K.T.; Chae, S.H.; Chun, S.H.; Jung, I.D.; Kang, H.K.; Park, Y.M. Resveratrol suppresses tumor progression via the regulation of indoleamine 2,3-dioxygenase. Biochem. Biophys. Res. Commun. 2013, 431, 348–353, doi:10.1016/j.bbrc.2012.12.093.
[113]
Jeong, Y.I.; Kim, S.W.; Jung, I.D.; Lee, J.S.; Chang, J.H.; Lee, C.M.; Chun, S.H.; Yoon, M.S.; Kim, G.T.; Ryu, S.W.; et al. Curcumin suppresses the induction of indoleamine 2,3-dioxygenase by blocking the janus-activated kinase-protein kinase Cdelta-STAT1 signaling pathway in interferon-gamma-stimulated murine dendritic cells. J. Biol. Chem. 2009, 284, 3700–3708.
[114]
Lee-Chang, C.; Bodogai, M.; Martin-Montalvo, A.; Wejksza, K.; Sanghvi, M.; Moaddel, R.; de Cabo, R.; Biragyn, A. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J. Immunol. 2013, 191, 4141–4151, doi:10.4049/jimmunol.1300606.
[115]
Olkhanud, P.B.; Damdinsuren, B.; Bodogai, M.; Gress, R.E.; Sen, R.; Wejksza, K.; Malchinkhuu, E.; Wersto, R.P.; Biragyn, A. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res. 2011, 71, 3505–3515, doi:10.1158/0008-5472.CAN-10-4316.
[116]
Bani, S.; Gautam, M.; Sheikh, F.A.; Khan, B.; Satti, N.K.; Suri, K.A.; Qazi, G.N.; Patwardhan, B. Selective th1 up-regulating activity of Withania somnifera aqueous extract in an experimental system using flow cytometry. J. Ethnopharmacol. 2006, 107, 107–115, doi:10.1016/j.jep.2006.02.016.
[117]
Sharada, A.C.; Solomon, F.E.; Devi, P.U.; Udupa, N.; Srinivasan, K.K. Antitumor and radiosensitizing effects of Withaferin A on mouse ehrlich ascites carcinoma in vivo. Acta Oncol. 1996, 35, 95–100, doi:10.3109/02841869609098486.
[118]
Thaiparambil, J.T.; Bender, L.; Ganesh, T.; Kline, E.; Patel, P.; Liu, Y.; Tighiouart, M.; Vertino, P.M.; Harvey, R.D.; Garcia, A.; et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int. J. Cancer 2011, 129, 2744–2755.
[119]
Raut, A.A.; Rege, N.N.; Tadvi, F.M.; Solanki, P.V.; Kene, K.R.; Shirolkar, S.G.; Pandey, S.N.; Vaidya, R.A.; Vaidya, A.B. Exploratory study to evaluate tolerability, safety, and activity of ashwagandha (Withania somnifera) in healthy volunteers. J. Ayurveda Integr. Med. 2012, 3, 111–114.
[120]
Fahim, M.S.; Fahim, Z.; Harman, J.M.; Clevenger, T.E.; Mullins, W.; Hafez, E.S. Effect of Panax ginseng on testosterone level and prostate in male rats. Arch. Androl. 1982, 8, 261–263, doi:10.3109/01485018208990207.
[121]
Hess, F.G., Jr.; Parent, R.A.; Stevens, K.R.; Cox, G.E.; Becci, P.J. Effects of subchronic feeding of ginseng extract G115 in beagle dogs. Food Chem. Toxicol. 1983, 21, 95–97.
[122]
Lee, N.H.; Yoo, S.R.; Kim, H.G.; Cho, J.H.; Son, C.G. Safety and tolerability of Panax ginseng root extract: A randomized, placebo-controlled, clinical trial in healthy korean volunteers. J. Altern. Complement Med. 2012, 18, 1061–1069.
National Institute of Health. Curcumin clnical trials. Available online: http://clinicaltrials.gov/ct2/results?term=Curcumin+Clinical+Trials&Search=Search/ (accessed on 6 October 2013).
[125]
Holder, G.M.; Plummer, J.L.; Ryan, A.J. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica 1978, 8, 761–768.
[126]
Tome-Carneiro, J.; Larrosa, M.; Gonzalez-Sarrias, A.; Tomas-Barberan, F.A.; Garcia-Conesa, M.T.; Espin, J.C. Resveratrol and clinical trials: The crossroad from in vitro studies to human evidence. Curr. Pharmaceut. Des. 2013, 19, 6064–6093, doi:10.2174/13816128113199990407.
[127]
Johnson, W.D.; Morrissey, R.L.; Usborne, A.L.; Kapetanovic, I.; Crowell, J.A.; Muzzio, M.; McCormick, D.L. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem. Toxicol. 2011, 49, 3319–3327.
[128]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275, 218–220.
National Institute of Health. Resveratrol Clinical Trials. Available online: http://clinicaltrials.gov/ct2/results?term=Resveratrol+Clinical+Trials&Search=Search/ (accessed on 6 October 2013).
[131]
Cottart, C.H.; Nivet-Antoine, V.; Beaudeux, J.L. Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans. Mol. Nutr. Food Res. 2013, doi:10.1002/mnfr.201200589.
[132]
Fong, M.Y.; Jin, S.; Rane, M.; Singh, R.K.; Gupta, R.; Kakar, S.S. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One 2012, 7, e42265.
[133]
Sharma, S.; Chopra, K.; Kulkarni, S.K.; Agrewala, J.N. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway. Clin. Exp. Immunol. 2007, 147, 155–163.