Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin ( 1), debromoaplysiatoxin ( 2) and anhydrodebromoaplysiatoxin ( 3), as well as two new analogues, 3-methoxyaplysiatoxin ( 4) and 3-methoxydebromoaplysiatoxin ( 5), are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV)-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 μM to 10.0 μM. Furthermore, debromoaplysiatoxin ( 2) and 3-methoxydebromoaplysiatoxin ( 5) exhibited significant anti-CHIKV activities with EC 50 values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively.
References
[1]
Gerwick, W.H.; Tan, L.T.; Sitachitta, N. Nitrogen-Containing Metabolites from Marine Cyanobacteria. Alkaloids Chem. Biol. 2001, 57, 75–184.
[2]
Tan, L.T. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 2007, 68, 954–979, doi:10.1016/j.phytochem.2007.01.012.
[3]
Tan, L.T. Marine cyanobacteria: A treasure trove of bioactive secondary metabolites for drug discovery. Stud. Nat. Prod. Chem. 2012, 36, 67–110, doi:10.1016/B978-0-444-53836-9.00021-9.
[4]
Tan, L.T. Pharmaceutical agents from filamentous marine cyanobacteria. Drug Discov. Today 2013, 18, 863–871, doi:10.1016/j.drudis.2013.05.010.
[5]
Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baures, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327, doi:10.1016/j.envint.2013.06.013.
[6]
Moore, R.E.; Blackman, A.J.; Cheuk, C.E.; Mynderse, J.S.; Mataumoto, G.K.; Clardy, J.; Woodard, R.W.; Craig, J.C. Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J. Org. Chem. 1984, 49, 2484–2489, doi:10.1021/jo00187a035.
[7]
Chlipala, G.E.; Pham, H.T.; Nguyen, V.H.; Krunic, A.; Shim, S.H.; Soejarto, D.D.; Orjala, J. Nhatrangins A and B, aplysiatoxin-related metabolites from the marine cyanobacterium Lyngbya majuscula from Vietnam. J. Nat. Prod. 2010, 73, 784–787, doi:10.1021/np100002q.
[8]
Van Apeldoorn, M.E.; van Egmond, H.P.; Speijers, G.J.A.; Bakker, G.J.I. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60, doi:10.1002/mnfr.200600185.
[9]
Nishizuka, Y. Discovery and prospect of protein kinase C research: Epilogue. J. Biochem. 2003, 133, 155–158, doi:10.1093/jb/mvg035.
[10]
Carter, C.A. Protein kinase C as a drug target: Implications for drug or diet prevention and treatment of cancer. Curr. Drug Targets 2000, 1, 163–183, doi:10.2174/1389450003349317.
[11]
Nakagawa, Y.; Yanagita, R.C.; Hamada, N.; Murakami, A.; Takahashi, H.; Saito, N.; Irie, K. A simple analogue of tumor-promotingaplysiatoxinis an antineoplastic agent rather than a tumor promoter: Development of a synthetically accessible protein kinase C activator with bryostatin-like activity. J. Am. Chem. Soc. 2009, 131, 7573–7579.
[12]
Yanagita, R.C.; Kamachi, H.; Tanaka, K.; Murakami, A.; Nakagawa, Y.; Tokuda, H.; Nagai, H.; Irie, K. Role of the phenolic hydroxyl group in the biological activities of simplified analogue of aplysiatoxin with antiproliferative activity. Bioorg. Med. Chem. Lett. 2010, 20, 6064–6066, doi:10.1016/j.bmcl.2010.08.051.
[13]
Nakagawa, Y.; Kikumori, M.; Yanagita, R.C.; Murakami, A.; Tokuda, H.; Nagai, H.; Irie, K. Synthesis and biological evaluation of the 12,12-dimethyl derivative of Aplog-1, an anti-proliferative analog of tumor-promoting aplysiatoxin. Biosci. Biotechnol. Biochem. 2011, 75, 1167–1173, doi:10.1271/bbb.110130.
[14]
Kikumori, M.; Yanagita, R.C.; Tokuda, H.; Suzuki, N.; Nagai, H.; Suenaga, K.; Irie, K. Structure-activity studies on the spiroketal moiety of a simplified analogue of debromoaplysiatoxin with antiproliferative activity. J. Med. Chem. 2012, 55, 5614–5626, doi:10.1021/jm300566h.
[15]
Irie, K.; Yanagita, R.C.; Nakagawa, Y. Challenges to the development of bryostatin-type anticancer drugs based on the activation mechanism of protein kinase Cδ. Med. Res. Rev. 2012, 32, 518–535, doi:10.1002/med.20220.
[16]
Nakagawa, Y. Artificial analogs of naturally occurring tumor promotors as biochemical tools and therapeutic leads. Biosci. Biotechnol. Biochem. 2012, 76, 1262–1274, doi:10.1271/bbb.120162.
[17]
Kamachi, H.; Tanaka, K.; Yanagita, R.C.; Murakami, A.; Murakami, K.; Tokuda, H.; Suzuki, N.; Nakagawa, Y.; Irie, K. Structure-activity studies on the side chain of a simplified analog of aplysiatoxin(aplog-1) with anti-proliferative activity. Bioorg. Med. Chem. 2013, 21, 2695–2702, doi:10.1016/j.bmc.2013.03.013.
[18]
Yanagita, R.C.; Kamachi, H.; Kikumori, M.; Tokuda, H.; Suzuki, N.; Suenaga, K.; Nagai, H.; Irie, K. Effects of the methoxy group in the side chain of debromoaplysiatoxin on its tumor-promoting and anti-proliferative activities. Bioorg. Med. Chem. Lett. 2013, 23, 4319–4323, doi:10.1016/j.bmcl.2013.05.096.
[19]
Hanaki, Y.; Kikumori, M.; Ueno, S.; Tokuda, H.; Suzuki, N.; Irie, K. Structure–activity studies at position 27 of aplog-1, a simplified analog of debromoaplysiatoxin with anti-proliferative activity. Tetrahedron 2013, 69, 7636–7645, doi:10.1016/j.tet.2013.02.008.
[20]
Sourisseau, M.; Schilte, C.; Casartelli, N.; Trouillet, C.; Guivel-Benhassine, F.; Rudnicka, D.; Sol-Foulon, N.; Le Roux, K.; Prevost, M.C.; Fsihi, H.; et al. Characterization of reemerging Chikungunya virus. PLoS Pathog. 2007, 3, e89, doi:10.1371/journal.ppat.0030089.
[21]
Hapuarachchi, H.C.; Bandara, K.B.; Sumanadasa, S.D.; Hapugoda, M.D.; Lai, Y.L.; Lee, K.S.; Tan, L.K.; Lin, R.T.; Ng, L.F.; Bucht, G.; et al. Re-emergence of Chikungunya virus in South-east Asia: Virological evidence from Sri Lanka and Singapore. J. Gen. Virol. 2010, 91, 1067–1076, doi:10.1099/vir.0.015743-0.
[22]
Dupuis-Maguiraga, L.; Noret, M.; Brun, S.; Le Grand, R.; Gras, G.; Roques, P. Chikungunya disease: Infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl. Trop. Dis. 2012, 6, e1446, doi:10.1371/journal.pntd.0001446.
[23]
Labadie, K.; Larcher, T.; Joubert, C.; Mannioui, A.; Delache, B.; Brochard, P.; Guigand, L.; Dubreil, L.; Lebon, P.; Verrier, B.; et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Invest. 2010, 120, 894–906, doi:10.1172/JCI40104.
[24]
Hawley, W.A.; Reiter, P.; Copeland, R.S.; Pumpuni, C.B.; Craig, G.B., Jr. Aedes albopictus in North America: Probable introduction in used tires from northern Asia. Science 1987, 236, 1114–1116.
[25]
Kaur, P.; Chu, J.J. Chikungunya virus: An update on antiviral development and challenges. Drug Discov. Today 2013, 18, 969–983, doi:10.1016/j.drudis.2013.05.002.
[26]
Sorgeloos, P.; Remiche-Van Der Wielen, C.; Persoone, G. The use of Artemia nauplii for toxicity tests—A critical anaysis. Ecotoxicol. Environ. Saf. 1978, 2, 249–255, doi:10.1016/S0147-6513(78)80003-7.