全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2014 

Palmitic Acid and Ergosta-7,22-dien-3-ol Contribute to the Apoptotic Effect and Cell Cycle Arrest of an Extract from Marthasterias glacialis L. in Neuroblastoma Cells

DOI: 10.3390/md12010054

Keywords: Marthasterias glacialis L., palmitic acid, ER-stress, CHOP, apoptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe the effect of a chemically characterized lipophilic extract obtained from Marthasterias glacialis L. against human breast cancer (MCF-7) and human neuroblastoma (SH-SY5Y) cell lines. Evaluation of DNA synthesis revealed that both cell lines were markedly affected in a concentration-dependent way, the SH-SY5Y cell line being more susceptible. Cell cycle arrest was observed, an effect induced by the sterol, ergosta-7,22-dien-3-ol, present in the extract. Morphological evaluation of treated cells showed the advent of lipid droplets and chromatin condensation compatible with apoptosis, which was confirmed by the evaluation of caspase-3 and -9 activities. Palmitic acid was the main compound responsible for this apoptotic effect by a ceramide-independent mechanism that involved endoplasmic reticulum (ER)-stress with upregulation of CCAAT/-enhancer-binding protein homologous protein (CHOP).

References

[1]  Altmann, K.-H.; Gertsch, J. Anticancer drugs from nature—natural products as a unique source of new microtubule-stabilizing agents. Nat. Prod. Rep. 2007, 24, 327–357, doi:10.1039/b515619j.
[2]  Itokawa, H.; Morris-Natschke, S.L.; Akiyama, T.; Lee, K.-H. Plant-derived natural product research aimed at new drug discovery. J. Nat. Med.-Tokyo 2008, 62, 263–280, doi:10.1007/s11418-008-0246-z.
[3]  Pereira, D.M.; Valent?o, P.; Correia-da-Silva, G.; Teixeira, N.; Andrade, P.B. Plant secondary metabolites in cancer chemotherapy: Where are we? Curr. Pharm. Biotechnol. 2012, 13, 632–650, doi:10.2174/138920112799857530.
[4]  Mayer, A.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265, doi:10.1016/j.tips.2010.02.005.
[5]  Montaser, R.; Luesch, H. Marine natural products: A new wave of drugs? Future Med. Chem. 2011, 3, 1475–1489, doi:10.4155/fmc.11.118.
[6]  Pereira, D.M.; Valent?o, P.; Andrade, P.B. Lessons from the Sea: Distribution, SAR and Molecular Mechanisms of Anti-inflammatory Drugs from Marine Organisms. In Studies in Natural Products Chemistry (Bioactive Natural Products); Atta-ur-Rahman, Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 2013.
[7]  Schumacher, M.; Kelkel, M.; Dicato, M.; Diederich, M. Gold from the sea: marine compounds as inhibitors of the hallmarks of cancer. Biotechnol. Adv. 2011, 29, 531–547, doi:10.1016/j.biotechadv.2011.02.002.
[8]  Ferreres, F.; Pereira, D.M.; Gil-Izquierdo, A.; Valentao, P.; Botelho, J.; Mouga, T.; Andrade, P.B. HPLC-PAD-atmospheric pressure chemical ionization-MS metabolite profiling of cytotoxic carotenoids from the echinoderm Marthasterias glacialis (spiny sea-star). J. Sep. Sci. 2010, 33, 2250–2257, doi:10.1002/jssc.201000197.
[9]  Mariutti, L.R.B.; Pereira, D.M.; Mercadante, A.Z.; Valent?o, P.; Teixeira, N.; Andrade, P.B. Further insights on the carotenoid profile of the echinoderm Marthasterias glacialis. Mar. Drugs 2012, 10, 1498–1510, doi:10.3390/md10071498.
[10]  Pereira, D.M.; Vinholes, J.; Guedes de Pinho, P.; Valent?o, P.; Mouga, T.; Teixeira, N.; Andrade, P.B. A gas chromatography-mass spectrometry multi-target method for the simultaneous analysis of three classes of metabolites in marine organisms. Talanta 2012, 100, 391–400, doi:10.1016/j.talanta.2012.08.004.
[11]  Pereira, D.M.; Correia-da-Silva, G.; Valent?o, P.; Mouga, T.; Teixeira, N.; Andrade, P.B. A lipidomic approach to drug discovery from marine organisms: Effect of a purified fraction of the lipidome of the echinoderm Marthasterias glacialis L. against human cancer cells. Comb. Chem. High Throughput Screen. 2013. in press.
[12]  Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529, doi:10.1038/nrm2199.
[13]  Schroder, M.; Kaufman, R.J. The mammalian unfolded protein response. Annu. Rev. Biochem. 2005, 74, 739–789, doi:10.1146/annurev.biochem.73.011303.074134.
[14]  Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008, 454, 455–462, doi:10.1038/nature07203.
[15]  Kong, J.Y.; Rabkin, S.W. Palmitate-induced cardiac apoptosis is mediated through CPT-1 but not influenced by glucose and insulin. Am. J. Physiol.-Heart Circ. Physiol. 2002, 282, H717–H725.
[16]  Karaskov, E.; Scott, C.; Zhang, L.; Teodoro, T.; Ravazzola, M.; Volchuk, A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology 2006, 147, 3398–3407, doi:10.1210/en.2005-1494.
[17]  Kolensnick, R.; Hannun, Y.A. Ceramide and apoptosis. Trends Biochem. Sci. 1999, 24, 224–225, doi:10.1016/S0968-0004(99)01408-5.
[18]  Morad, S.A.F.; Cabot, M.C. Ceramide-orchestrated signalling in cancer cells. Nat. Rev. Cancer 2013, 13, 51–65, doi:10.1038/nrc3398.
[19]  Movsesyan, V.A.; Yakovlev, A.G.; Dabaghyan, E.A.; Stoica, B.A.; Faden, A.I. Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochem. Biophys. Res. Commun. 2002, 299, 201–207, doi:10.1016/S0006-291X(02)02593-7.
[20]  Suzuki, J.; Akahane, K.; Nakamura, J.; Naruse, K.; Kamiya, H.; Himeno, T.; Nakamura, N.; Shibata, T.; Kondo, M.; Nagasaki, H.; et al. Palmitate induces apoptosis in Schwann cells via both ceramide-dependent and independent pathways. Neuroscience 2011, 176, 188–198, doi:10.1016/j.neuroscience.2010.11.035.
[21]  Holland, W.L.; Summers, S.A. Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev. 2008, 29, 381–402, doi:10.1210/er.2007-0025.
[22]  Wei, Y.; Wang, D.; Topczewski, F.; Pagliassotti, M.J. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol.-Endocrinol. Metab. 2006, 291, E275–E281, doi:10.1152/ajpendo.00644.2005.
[23]  Bolognesi, A.; Chatgilialoglu, A.; Polito, L.; Ferreri, C. Membrane lipidome reorganization correlates with the fate of neuroblastoma cells supplemented with fatty acids. PLoS One 2013, 8, e55537.
[24]  Saleh, M.; Vaillancourt, J.P.; Graham, R.K.; Huyck, M.; Srinivasula, S.M.; Alnemri, E.S.; Steinberg, M.H.; Nolan, V.; Baldwin, C.T.; Hotchkiss, R.S. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 2004, 429, 75–79, doi:10.1038/nature02451.
[25]  Yavari, M.; Brinkley, G.; Klapstein, K.; Hartwig, W.; Rao, R.; Hermel, E. Presence of the functional CASPASE-12 allele in Indian subpopulations. Int. J. Immunogol. 2012, 39, 389–393, doi:10.1111/j.1744-313X.2012.01107.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133