全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Insights into the Toxicological Properties of a Low Molecular Weight Fraction from Zoanthus sociatus (Cnidaria)

DOI: 10.3390/md11082873

Keywords: biological activity, toxins, Zoanthus sociatus, Anthozoa, Cnidaria, LD50 mice

Full-Text   Cite this paper   Add to My Lib

Abstract:

The phylum Cnidaria is an ancient group of venomous animals, specialized in the production and delivery of toxins. Many species belonging to the class Anthozoa have been studied and their venoms often contain a group of peptides, less than 10 kDa, that act upon ion channels. These peptides and their targets interact with high affinity producing neurotoxic and cardiotoxic effects, and even death, depending on the dose and the administration pathway. Zoanthiniaria is an order of the Subclass Hexacorallia, class Anthozoa, and unlike sea anemone (order Actiniaria), neither its diversity of toxins nor the in vivo effects of the venoms has been exhaustively explored. In this study we assessed some toxicological tests on mice with a low molecular weight fraction obtained by gel filtration in Sephadex G-50 from Zoanthus sociatus crude extract. The gel filtration chromatogram at 280 nm revealed two major peaks, the highest absorbance corresponding to the low molecular weight fraction. The toxicological effects seem to be mostly autonomic and cardiotoxic, causing death in a dose dependent manner with a LD 50 of 792 μg/kg. Moreover, at a dose of 600 μg/kg the active fraction accelerated the KCl-induced lethality in mice.

References

[1]  WoRMS. World Register of Marine Species. Available online: http://www.marinespecies.org/aphia.php?p=taxdetails&id=1267 (accessed on 22 March 2013).
[2]  Daly, M.; Brugler, M.R.; Cartwright, P.; Collins, A.G.; Dawson, M.N.; Fautin, D.G.; France, S.C.; Opresko, D.; Rodriguez, E.; Romano, S. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 2007, 1668, 127–182.
[3]  Weill, R. Contribution a L’étude des Cnidaires et de Leurs Nématocystes: Recherches sur les Nématocystes (Morphologie, Physiologie, Développement) la Valeur Taxonomique du Cnidome; Laboratoire D’évolution des êtres Organisés: Paris, France, 1934.
[4]  Watson, G.M.; Mariscal, R.N. Ultrastructure and sulfur cytochemistry of nematocyst development in catch tentacles of the sea anemone Haliplanella luciae (Cnidaria: Anthozoa). J. Ultrastruct. Res. 1984, 87, 159–171, doi:10.1016/S0022-5320(84)80075-1.
[5]  Fautin, D.G. Structural diversity, systematics, and evolution of cnidae. Toxicon 2009, 54, 1054–1064, doi:10.1016/j.toxicon.2009.02.024.
[6]  Turk, T.; Kem, W.R. The phylum Cnidaria and investigations of its toxins and venoms until 1990. Toxicon 2009, 54, 1031–1037, doi:10.1016/j.toxicon.2009.06.031.
[7]  Fraz?o, B.; Vasconcelos, V.; Antunes, A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: An overview. Mar. Drugs 2012, 10, 1812–1851, doi:10.3390/md10081812.
[8]  Nagai, H. Marine Protein Toxins. In Handbook of Marine Natural Products; Fattorusso, E., Gerwick, W.H., Taglialatela-Scafati, O., Eds.; Springer: Amsterdam, The Netherlands, 2012; pp. 1388–1419.
[9]  Oliveira, J.S.; Fuentes-Silva, D.; King, G.F. Development of a rational nomenclature for naming peptide and protein toxins from sea anemones. Toxicon 2012, 60, 539–550, doi:10.1016/j.toxicon.2012.05.020.
[10]  Honma, T.; Shiomi, K. Peptide toxins in sea anemones: Structural and functional aspects. Mar. Biotechnol. 2006, 8, 1–10, doi:10.1007/s10126-005-5093-2.
[11]  Nesher, N.; Shapira, E.; Sher, D.; Moran, Y.; Tsveyer, L.; Turchetti-Maia, A.L.; Horowitz, M.; Hochner, B.; Zlotkin, E. AdE-1, a new inotropic Na+ channel toxin from Aiptasia diaphana, is similar to, yet distinct from, known anemone Na+ channel toxins. Biochem. J. 2013, 451, 81–90, doi:10.1042/BJ20121623.
[12]  Orts, D.J.; Peigneur, S.; Madio, B.; Cassoli, J.S.; Montandon, G.G.; Pimenta, A.M.; Bicudo, J.E.; Freitas, J.C.; Zaharenko, A.J.; Tytgat, J. Biochemical and electrophysiological characterization of two sea anemone type 1 potassium toxins from a geographically distant population of Bunodosoma caissarum. Mar. Drugs 2013, 11, 655–679, doi:10.3390/md11030655.
[13]  Gleibs, S.; Mebs, D.; Werding, B. Studies on the origin and distribution of palytoxin in a Caribbean coral reef. Toxicon 1995, 33, 1531–1537, doi:10.1016/0041-0101(95)00079-2.
[14]  Villar, R.M.; Gil-Longo, J.; Daranas, A.H.; Souto, M.L.; Fernandez, J.J.; Peixinho, S.; Barral, M.A.; Santafe, G.; Rodriguez, J.; Jimenez, C. Evaluation of the effects of several zoanthamine-type alkaloids on the aggregation of human platelets. Bioorg. Med. Chem. 2003, 11, 2301–2306, doi:10.1016/S0968-0896(03)00107-X.
[15]  Lakshmi, V.; Saxena, A.; Pandey, K.; Bajpai, P.; Misra-Bhattacharya, S. Antifilarial activity of Zoanthus species (phylum Coelenterata, class Anthzoa) against human lymphatic filaria, Brugia malayi. Parasitol. Res. 2004, 93, 268–273.
[16]  Diaz-Garcia, C.M.; Sanchez-Soto, C.; Fuentes-Silva, D.; Leon-Pinzon, C.; Dominguez-Perez, D.; Varela, C.; Rodriguez-Romero, A.; Castaneda, O.; Hiriart, M. Low molecular weight compounds from Zoanthus sociatus impair insulin secretion via Ca+2 influx blockade and cause glucose intolerance in vivo. Toxicon 2012, 59, 306–314, doi:10.1016/j.toxicon.2011.11.019.
[17]  Santos, Y.; Martinez, M.; Sandoval, A.; Rodriguez, A.A.; Falcon, A.; Heimer de la Cotera, E.P.; Aguilar, M.B.; Flores, P.; Felix, R.; Arreguin, R. Arrhythmogenic effect of a crude extract from sea anemone Condylactis gigantea: Possible involvement of rErg1 channels. Toxicon 2013, 67, 47–54, doi:10.1016/j.toxicon.2013.02.015.
[18]  Leal-Garcia, M.; Garcia-Ortuno, L.; Ruiz-Azuara, L.; Gracia-Mora, I.; Luna-Delvillar, J.; Sumano, H. Assessment of acute respiratory and cardiovascular toxicity of casiopeinas in anaesthetized dogs. Basic Clin. Pharmacol. Toxicol. 2007, 101, 151–158, doi:10.1111/j.1742-7843.2007.00038.x.
[19]  Beress, L. Biological active compounds from Coelenterates. Pure Appl. Chem. 1981, 54, 1981–1994, doi:10.1351/pac198254101981.
[20]  Benitah, J.P.; Alvarez, J.L.; Gomez, A.M. l-Type Ca(2+) current in ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 2009, 48, 26–36, doi:10.1016/j.yjmcc.2009.07.026.
[21]  Chambers, D.J. Mechanisms and alternative methods of achieving cardiac arrest. Ann. Thorac. Surg. 2003, 75, S661–S666, doi:10.1016/S0003-4975(02)04688-X.
[22]  Newton, C.R.; Delgado, J.H.; Gomez, H.F. Calcium and beta receptor antagonist overdose: A review and update of pharmacological principles and management. Semin. Respir. Crit. Care Med. 2002, 23, 19–25, doi:10.1055/s-2002-20585.
[23]  Ojetti, V.; Migneco, A.; Bononi, F.; de Lorenzo, A.; Gentiloni Silveri, N. Calcium channel blockers, beta-blockers and digitalis poisoning: Management in the emergency room. Eur. Rev. Med. Pharmacol. Sci. 2005, 9, 241–246.
[24]  Levine, M.; Boyer, E.W.; Pozner, C.N.; Geib, A.J.; Thomsen, T.; Mick, N.; Thomas, S.H. Assessment of hyperglycemia after calcium channel blocker overdoses involving diltiazem or verapamil. Crit. Care Med. 2007, 35, 2071–2075, doi:10.1097/01.CCM.0000278916.04569.23.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133