全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Okadaic Acid Meet and Greet: An Insight into Detection Methods, Response Strategies and Genotoxic Effects in Marine Invertebrates

DOI: 10.3390/md11082829

Keywords: biotoxins, accumulation, depuration, food chain, diarrhetic shellfish poisoning, tumor, apoptosis, genome integrity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Harmful Algal Blooms (HABs) constitute one of the most important sources of contamination in the oceans, producing high concentrations of potentially harmful biotoxins that are accumulated across the food chains. One such biotoxin, Okadaic Acid (OA), is produced by marine dinoflagellates and subsequently accumulated within the tissues of filtering marine organisms feeding on HABs, rapidly spreading to their predators in the food chain and eventually reaching human consumers causing Diarrhetic Shellfish Poisoning (DSP) syndrome. While numerous studies have thoroughly evaluated the effects of OA in mammals, the attention drawn to marine organisms in this regard has been scarce, even though they constitute primary targets for this biotoxin. With this in mind, the present work aimed to provide a timely and comprehensive insight into the current literature on the effect of OA in marine invertebrates, along with the strategies developed by these organisms to respond to its toxic effect together with the most important methods and techniques used for OA detection and evaluation.

References

[1]  Landsberg, J.H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 2002, 10, 113–390, doi:10.1080/20026491051695.
[2]  Yasumoto, T.; Murata, M.; Oshima, Y.; Matsumoto, G.K.; Clardy, J. Diarrhetic Shellfish Poisoning. In Seafood Toxins; Ragelis, E.P., Ed.; AOAC: Washington, DC, USA, 1984; pp. 214–217.
[3]  Yasumoto, T.; Oshima, Y.; Yamaguchi, M. Occurrence of a new type of shellfish poisoning in Tohoku district. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 1249–1255, doi:10.2331/suisan.44.1249.
[4]  Van Dolah, F.M. Marine algal toxins: Origins, health effects, and their increased occurrence. Environ. Health Perspect. 2000, 108, 133–141, doi:10.1289/ehp.00108s1133.
[5]  Sellner, K.G.; Doucette, G.J.; Kirkpatrick, G.J. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 2003, 30, 383–406, doi:10.1007/s10295-003-0074-9.
[6]  Tachibana, K.; Scheuer, P.J.; Tsukitani, Y.; Kikuchi, H.; van Engen, D.; Clardy, J.; Gopichand, Y.; Schmitz, F.J. Okadaic acid, a cytotoxic poliether from two marine sponges of the genus Halichondria. J. Am. Chem. Soc. 1981, 103, 2469–2471, doi:10.1021/ja00399a082.
[7]  Lee, J.-S.; Igarashi, T.; Fraga, S.; Dahl, E.; Hovgaard, P.; Yasumoto, T. Determination of diarrhetic shellfish toxins in various dinoflagellate species. J. Appl. Phycol. 1989, 1, 147–152, doi:10.1007/BF00003877.
[8]  Reguera, B.; Velo-Suárez, L.; Raine, R.; Park, M.G. Harmful Dinophysis species: A review. Harmful Algae 2012, 14, 87–106, doi:10.1016/j.hal.2011.10.016.
[9]  Fujiki, H.; Suganuma, M. Unique features of the okadaic acid activity class of tumor promoters. J. Cancer Res. Clin. Oncol. 1999, 125, 150–155.
[10]  Suganuma, M.; Fujiki, H.; Suguri, H.; Yoshizawa, S.; Hirota, M.; Nakayasu, M.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Sugimura, T. Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc. Natl. Acad. Sci. USA 1988, 85, 1768–1771, doi:10.1073/pnas.85.6.1768.
[11]  Shumway, S.E. Phycotoxin-related shellfish poisoning: Bivalve molluscs are not the only vectors. Rev. Fish. Sci. 1995, 3, 1–31, doi:10.1080/10641269509388565.
[12]  Vilari?o, N.; Louzao, M.C.; Vieytes, M.R.; Botana, L.M. Biological methods for marine toxin detection. Anal. Bioanal. Chem. 2010, 397, 1673–1681, doi:10.1007/s00216-010-3782-9.
[13]  Vernoux, J.P.; Le Baut, C.; Masselin, P.; Marais, C.; Baron, B.; Choumiloff, R.; Proniewski, F.; Nizard, G.; Bohec, M. The use of Daphnia magna for detection of okadaic acid in mussel extracts. Food Addit. Contam. 1993, 10, 603–608, doi:10.1080/02652039309374184.
[14]  Garthwaite, I. Keeping shellfish fresh to eat: A brief review on shellfish toxins, and methods for their detection. Trends Food Sci. Technol. 2000, 11, 235–244, doi:10.1016/S0924-2244(01)00006-1.
[15]  Croci, L.; Cozzi, L.; Stacchini, A.; de Medici, D.; Toti, L. A rapid tissue culture assay for the detection of okadaic acid and related compounds in mussels. Toxicon 1997, 35, 223–230, doi:10.1016/S0041-0101(96)00124-9.
[16]  Amzil, Z.; Pouchus, Y.F.; Le Boterff, J.; Roussakis, C.; Verbist, J.F.; Marcaillou-Lebaut, C.; Masselin, P. Short-time cytotoxicity of mussel extracts: A new bioassay for okadaic acid detection. Toxicon 1992, 30, 1419–1425, doi:10.1016/0041-0101(92)90517-9.
[17]  Tubaro, A.; Florio, C.; Luxich, E.; Vertua, R.; Della Loggia, R.; Yasumoto, T. Suitability of the MTT-based cytotoxicity assay to detect okadaic acid contamination of mussels. Toxicon 1996, 34, 965–974, doi:10.1016/0041-0101(96)00073-6.
[18]  Gerssen, A.; Pol-Hofstad, I.E.; Poelman, M.; Mulder, P.P.; van den Top, H.J.; de Boer, J. Marine toxins: Chemistry, toxicity, occurrence and detection, with special reference to the Dutch situation. Toxins (Basel) 2010, 2, 878–904, doi:10.3390/toxins2040878.
[19]  Gerssen, A.; Mulder, P.P.; de Boer, J. Screening of lipophilic marine toxins in shellfish and algae: Development of a library using liquid chromatography coupled to orbitrap mass spectrometry. Anal. Chim. Acta 2011, 685, 176–185, doi:10.1016/j.aca.2010.11.036.
[20]  Christian, B.; Luckas, B. Determination of marine biotoxins relevant for regulations: From the mouse bioassay to coupled LC-MS methods. Anal. Bioanal. Chem. 2008, 391, 117–134, doi:10.1007/s00216-007-1778-x.
[21]  Lee, J.S.; Yanagi, T.; Kenma, R.; Yasumoto, T. Fluorometric determination of diarrhetic shellfish toxins by high-perfomance liquid chromatography. Agric. Biol. Chem. 1987, 51, 877–881, doi:10.1271/bbb1961.51.877.
[22]  Hungerford, J.M.; Wekell, M.M. Analytical Methods for Marine Toxins. In Handbook of Natural Toxins; Tu, A., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1992; Volume 7, pp. 415–473.
[23]  Bouaicha, N.; Hennion, M.C.; Sandra, P. Determination of okadaic acid by micellar electrokinetic chromatography with ultraviolet detection. Toxicon 1997, 35, 273–281, doi:10.1016/S0041-0101(96)00069-4.
[24]  Aune, T.; Yndestad, M. Diarrhetic Shellfish Poisoning. In Algal Toxins in Seafood and Drinking Water; Falconer, I.R., Ed.; Academic Press: London, UK, 1993; pp. 87–104.
[25]  Nincevic Gladan, Z.; Ujevic, I.; Milandri, A.; Marasovic, I.; Ceredi, A.; Pigozzi, S.; Arapov, J.; Skejic, S. Lipophilic toxin profile in Mytilus galloprovincialis during episodes of diarrhetic shellfish poisoning (DSP) in the N.E. Adriatic Sea in 2006. Molecules 2011, 16, 888–899, doi:10.3390/molecules16010888.
[26]  Armi, Z.; Turki, S.; Trabelsi, E.; Ceredi, A.; Riccardi, E.; Milandri, A. Occurrence of diarrhetic shellfish poisoning (DSP) toxins in clams (Ruditapes decussatus) from Tunis north lagoon. Environ. Monit. Assess. 2012, 184, 5085–5095.
[27]  Vieytes, M.R.; Fontal, O.I.; Leira, F.; Baptista de Sousa, J.M.; Botana, L.M. A fluorescent microplate assay for diarrheic shellfish toxins. Anal. Biochem. 1997, 248, 258–264, doi:10.1006/abio.1997.2127.
[28]  Tubaro, A.; Florio, C.; Luxich, E.; Sosa, S.; Della Loggia, R.; Yasumoto, T. A protein phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon 1996, 34, 743–752, doi:10.1016/0041-0101(96)00027-X.
[29]  Morton, S.L.; Tindall, D.R. Determination of okadaic acid content of dinoflagellate cells: A comparison of the HPLC-fluorescent method and two monoclonal antibody ELISA test kits. Toxicon 1996, 34, 947–954, doi:10.1016/0041-0101(96)00026-8.
[30]  Vale, P.; Sampayo, M.A. Comparison between HPLC and a commercial immunoassay kit for detection of okadaic acid and esters in Portuguese bivalves. Toxicon 1999, 37, 1565–1577, doi:10.1016/S0041-0101(99)00105-1.
[31]  Marcaillou-Le Baut, C.; Amzil, Z.; Vernoux, J.P.; Pouchus, Y.F.; Bohec, M.; Simon, J.F. Studies on the detection of okadaic acid in mussels: preliminary comparison of bioassays. Nat. Toxins 1994, 2, 312–317, doi:10.1002/nt.2620020510.
[32]  Vieites, J.M.; Leira, F.; Botana, L.M.; Vieytes, M.R. Determination of DSP toxins: Comparative study of HPLC and bioassay to reduce the observation time of the mouse bioassay. Arch. Toxicol. 1996, 70, 440–443, doi:10.1007/s002040050296.
[33]  González, J.C.; Leira, F.; Fontal, O.I.; Vieytes, M.R.; Arévalo, F.F.; Vieites, J.M.; Bermúdez-Puente, M.; Mu?iz, S.; Salgado, C.; Yasumoto, T.; Botana, L.M. Inter-laboratory validation of the fluorescent protein phosphatase inhibition assay to determine diarrhetic shellfish toxins: Intercomparison with liquid chromatography and mouse bioassay. Anal. Chim. Acta 2002, 466, 233–246, doi:10.1016/S0003-2670(02)00597-4.
[34]  Louppis, A.P.; Badeka, A.V.; Katikou, P.; Paleologos, E.K.; Kontominas, M.G. Determination of okadaic acid, dinophysistoxin-1 and related esters in Greek mussels using HPLC with fluorometric detection, LC-MS/MS and mouse bioassay. Toxicon 2009, 55, 724–733.
[35]  Mouratidou, T.; Kaniou-Grigoriadou, I.; Samara, C.; Kouimtzis, T. Detection of the marine toxin okadaic acid in mussels during a diarrhetic shellfish poisoning (DSP) episode in Thermaikos Gulf, Greece, using biological, chemical and immunological methods. Sci. Total Environ. 2006, 366, 894–904, doi:10.1016/j.scitotenv.2005.03.002.
[36]  Turrell, E.A.; Stobo, L. A comparison of the mouse bioassay with liquid chromatography-mass spectrometry for the detection of lipophilic toxins in shellfish from Scottish waters. Toxicon 2007, 50, 442–447, doi:10.1016/j.toxicon.2007.04.002.
[37]  Sassolas, A.; Catanante, G.; Hayat, A.; Stewart, L.D.; Elliott, C.T.; Marty, J.L. Improvement of the efficiency and simplification of ELISA tests for rapid and ultrasensitive detection of okadaic acid in shellfish. Food Control 2013, 30, 144–149, doi:10.1016/j.foodcont.2012.05.028.
[38]  An, T.; Winshell, J.; Scorzetti, G.; Fell, J.W.; Rein, K.S. Identification of okadaic acid production in the marine dinoflagellate Prorocentrum rhathymum from Florida Bay. Toxicon 2009, 55, 653–657.
[39]  Rossignoli, A.E.; Blanco, J. Cellular distribution of okadaic acid in the digestive gland of Mytilus galloprovincialis (Lamarck, 1819). Toxicon 2008, 52, 957–959, doi:10.1016/j.toxicon.2008.09.003.
[40]  Blanco, J.; Marino, C.; Martin, H.; Acosta, C.P. Anatomical distribution of diarrhetic shellfish poisoning (DSP) toxins in the mussel Mytilus galloprovincialis. Toxicon 2007, 50, 1011–1018, doi:10.1016/j.toxicon.2007.09.002.
[41]  Svensson, S. Effects, Dynamics and Management of Okadaic Acid in Blue Mussels, Mytilus edulis. Ph.D. Thesis, G?teborg University, G?teborg, Sweden, 2003.
[42]  Svensson, S.; Forlin, L. Analysis of the importance of lipid breakdown for elimination of okadaic acid (diarrhetic shellfish toxin) in mussels, Mytilus edulis: Results from a field study and a laboratory experiment. Aquat. Toxicol. 2004, 66, 405–418, doi:10.1016/j.aquatox.2003.11.002.
[43]  Duinker, A.; Bergslien, M.; Strand, ?.; Olseng, C.D.; Svardal, A. The effect of size and age on depuration rates of diarrhetic shellfish toxins (DST) in mussels (Mytilus edulis L.). Harmful Algae 2007, 6, 288–300, doi:10.1016/j.hal.2006.10.003.
[44]  Rossignoli, A.E.; Blanco, J. Subcellular distribution of okadaic acid in the digestive gland of Mytilus galloprovincialis: First evidences of lipoprotein binding to okadaic acid. Toxicon 2010, 55, 221–226, doi:10.1016/j.toxicon.2009.07.022.
[45]  Suzuki, T.; Igarashi, T.; Ichimi, K.; Watai, M.; Suzuki, M.; Ogiso, E.; Yasumoto, T. Kinetics of diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops Patinopecten yessoensis. Fish. Sci. 2005, 71, 948–955, doi:10.1111/j.1444-2906.2005.01049.x.
[46]  Vale, P. Profiles of fatty acids and 7-O-acyl okadaic acid esters in bivalves: Can bacteria be involved in acyl esterification of okadaic acid? Comp. Biochem. Physiol. C 2010, 151, 18–24.
[47]  Rossignoli, A.E.; Fernandez, D.; Regueiro, J.; Marino, C.; Blanco, J. Esterification of okadaic acid in the mussel Mytilus galloprovincialis. Toxicon 2011, 57, 712–720, doi:10.1016/j.toxicon.2011.02.003.
[48]  Torgersen, T.; Miles, C.O.; Rundberget, T.; Wilkins, A.L. New esters of okadaic acid in seawater and blue mussels (Mytilus edulis). J. Agric. Food Chem. 2008, 56, 9628–9635, doi:10.1021/jf8016749.
[49]  Kitching, J.A.; Sloane, J.F.; Ebling, F.J. The ecology of lough ine VIII. Mussels and their predators. J. Anim. Ecol. 1959, 28, 331–341, doi:10.2307/2087.
[50]  Vale, P.; de M. Sampayo, M.A. First confirmation of human diarrhoeic poisonings by okadaic acid esters after ingestion of razor clams (Solen marginatus) and green crabs (Carcinus maenas) in Aveiro lagoon, Portugal and detection of okadaic acid esters in phytoplankton. Toxicon 2002, 40, 989–996, doi:10.1016/S0041-0101(02)00095-8.
[51]  Torgersen, T.; Aasen, J.; Aune, T. Diarrhetic shellfish poisoning by okadaic acid esters from Brown crabs (Cancer pagurus) in Norway. Toxicon 2005, 46, 572–578, doi:10.1016/j.toxicon.2005.06.024.
[52]  Castberg, T.; Torgersen, T.; Aasen, J.; Aune, T.; Naustvoll, L.-J. Diarrhoetic shellfish poisoning toxins in Cancer pagurus Linnaeus, 1758 (Brachyura, Cancridae) in Norwegian waters. Sarsia 2004, 89, 311–317, doi:10.1080/00364820410002550.
[53]  Jorgensen, K.; Cold, U.; Fischer, K. Accumulation and depuration of okadaic acid esters in the European green crab (Carcinus maenas) during a feeding study. Toxicon 2008, 51, 468–472, doi:10.1016/j.toxicon.2007.09.004.
[54]  Castro-Ferreira, M.P.; Roelofs, D.; van Gestel, C.A.; Verweij, R.A.; Soares, A.M.; Amorim, M.J. Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere 2012, 87, 1222–1227, doi:10.1016/j.chemosphere.2012.01.021.
[55]  Franchini, A.; Marchetti, M. The effects of okadaic acid on Enchytraeus crypticus (Annelida: Oligochaeta). Invertebr. Surviv. J. 2006, 3, 111–117.
[56]  Franchini, A.; Ottaviani, E. Age-related toxic effects and recovery from okadaic acid treatment in Enchytraeus crypticus (Annelida: Oligochaeta). Toxicon 2008, 52, 115–121, doi:10.1016/j.toxicon.2008.04.176.
[57]  Turner, J.T.; Tester, P.A. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limmnol. Oceanogr. 1997, 42, 1203–1214, doi:10.4319/lo.1997.42.5_part_2.1203.
[58]  Maneiro, I.; Frangópoulos, M.; Guisande, C.; Fernández, M.; Reguera, B.; Riveiro, I. Zooplankton as a potential vector of diarrhetic shellfish poisoning toxins through the food web. Mar. Ecol. Prog. Ser. 2000, 201, 155–163, doi:10.3354/meps201155.
[59]  Turner, J.T.; Tester, P.A.; Hansen, P.J. Interactions between Toxic Marine Phytoplankton and Metazoan and Protistan Grazers. In The Physiological Ecology of Harmful Algal Blooms; Anderson, D.M., Cembella, A.D., Hallegraeff, G.M., Eds.; Springer-Verlag: Berlin, Germany, 1998; Volume G41, pp. 453–474.
[60]  Maneiro, I.; D’Aleo, O.; Guisande, C.; Reguera, B. Interactions between the DSP Agent Dinophysis acuminata and the Microzooplankton Community. In Harmful algae; Reguera, B., Blanco, J., Fernández, M.L., Wyatt, T., Eds.; Xunta de Galicia and IOC of UNESCO: Santiago de Compostela, Spain, 1998; pp. 386–389.
[61]  Windust, A.J.; Quilliam, M.A.; Wright, J.L.; McLachlan, J.L. Comparative toxicity of the diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 1997, 35, 1591–1603, doi:10.1016/S0041-0101(97)00047-0.
[62]  Sugg, L.; VanDolah, F.M. No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J. Phycol. 1999, 35, 93–103.
[63]  Perreault, F.; Matias, M.S.; Oukarroum, A.; Matias, W.G.; Popovic, R. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta. Sci. Total Environ. 2012, 414, 198–204, doi:10.1016/j.scitotenv.2011.10.045.
[64]  Silvestre, F.; Tosti, E. Impact of marine drugs on animal reproductive processes. Mar. Drugs 2009, 7, 539–564, doi:10.3390/md7040539.
[65]  Wiens, M.; Luckas, B.; Brümmer, F.; Shokry, M.; Ammar, A.; Steffen, R.; Batel, R.; Diehl-Seifert, B.; Schr?der, H.C.; Müller, W.E.G. Okadaic acid: A potential defense molecule for the sponge Suberites domuncula. Mar. Biol. 2003, 142, 213–223.
[66]  Schroder, H.C.; Breter, H.J.; Fattorusso, E.; Ushijima, H.; Wiens, M.; Steffen, R.; Batel, R.; Muller, W.E. Okadaic acid, an apoptogenic toxin for symbiotic/parasitic annelids in the demosponge Suberites domuncula. Appl. Environ. Microbiol. 2006, 72, 4907–4916, doi:10.1128/AEM.00228-06.
[67]  Konoki, K.; Saito, K.; Matsuura, H.; Sugiyama, N.; Cho, Y.; Yotsu-Yamashita, M.; Tachibana, K. Binding of diarrheic shellfish poisoning toxins to okadaic acid binding proteins purified from the sponge Halichondria okadai. Bioorg. Med. Chem. 2010, 18, 7607–7610, doi:10.1016/j.bmc.2010.08.043.
[68]  Sugiyama, N.; Konoki, K.; Tachibana, K. Isolation and characterization of okadaic acid binding proteins from the marine sponge Halichondria okadai. Biochemistry 2007, 46, 11410–11420, doi:10.1021/bi700490n.
[69]  Muller, W.E.; Belikov, S.I.; Kaluzhnaya, O.V.; Perovic-Ottstadt, S.; Fattorusso, E.; Ushijima, H.; Krasko, A.; Schroder, H.C. Cold stress defense in the freshwater sponge Lubomirskia baicalensis. Role of okadaic acid produced by symbiotic dinoflagellates. FEBS J. 2007, 274, 23–36, doi:10.1111/j.1742-4658.2006.05559.x.
[70]  Prado-Alvarez, M.; Florez-Barros, F.; Sexto-Iglesias, A.; Mendez, J.; Fernandez-Tajes, J. Effects of okadaic acid on haemocytes from Mytilus galloprovincialis: A comparison between field and laboratory studies. Mar. Environ. Res. 2012, 81, 90–93, doi:10.1016/j.marenvres.2012.08.011.
[71]  Prado-Alvarez, M.; Florez-Barros, F.; Mendez, J.; Fernandez-Tajes, J. Effect of okadaic acid on carpet shell clam (Ruditapes decussatus) haemocytes by in vitro exposure and harmful algal bloom simulation assays. Cell Biol. Toxicol. 2013, 29, 189–197, doi:10.1007/s10565-013-9246-1.
[72]  Svensson, S.; Sarngren, A.; Forlin, L. Mussel blood cells, resistant to the cytotoxic effects of okadaic acid, do not express cell membrane p-glycoprotein activity (multixenobiotic resistance). Aquat. Toxicol. 2003, 65, 27–37, doi:10.1016/S0166-445X(03)00097-3.
[73]  Fladmark, K.E.; Serres, M.H.; Larsen, N.L.; Yasumoto, T.; Aune, T.; Doskeland, S.O. Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon 1998, 36, 1101–1114, doi:10.1016/S0041-0101(98)00083-X.
[74]  Laidley, C.W.; Cohen, E.; Casida, J.E. Protein phosphatase in neuroblastoma cells: [3H]cantharidin binding site in relation to cytotoxicity. J. Pharmacol. Exp. Ther. 1997, 280, 1152–1158.
[75]  Ritz, V.; Marwitz, J.; Richter, E.; Ziemann, C.; Quentin, I.; Steinfelder, H.J. Characterization of two pituitary GH3 cell sublines partially resistant to apoptosis induction by okadaic acid. Biochem. Pharmacol. 1997, 54, 967–971, doi:10.1016/S0006-2952(97)00397-3.
[76]  Tohda, H.; Yasui, A.; Yasumoto, T.; Nakayasu, M.; Shima, H.; Nagao, M.; Sugimura, T. Chinese hamster ovary cells resistant to okadaic acid express a multidrug resistant phenotype. Biochem. Biophys. Res. Commun. 1994, 203, 1210–1216, doi:10.1006/bbrc.1994.2311.
[77]  Creppy, E.E.; Traore, A.; Baudrimont, I.; Cascante, M.; Carratu, M.R. Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid. Toxicology 2002, 181-182, 433–439, doi:10.1016/S0300-483X(02)00489-4.
[78]  Traore, A.; Baudrimont, I.; Ambaliou, S.; Dano, S.D.; Creppy, E.E. DNA breaks and cell cycle arrest induced by okadaic acid in Caco-2 cells, a human colonic epithelial cell line. Arch. Toxicol. 2001, 75, 110–117, doi:10.1007/s002040000188.
[79]  Van Dolah, F.M.; Ramsdell, J.S. Okadaic acid inhibits a protein phosphatase activity involved in formation of the mitotic spindle of GH4 rat pituitary cells. J. Cell. Physiol. 1992, 151, 190–198, doi:10.1002/jcp.1041520124.
[80]  Carvalho Pinto-Silva, C.R.; Catian, R.; Moukha, S.; Matias, W.G.; Creppy, E.E. Comparative study of Domoic Acid and Okadaic Acid induced-chromosomal abnormalities in the Caco-2 cell line. Int. J. Environ. Res. Public Health 2006, 3, 4–10, doi:10.3390/ijerph2006030001.
[81]  Gehringer, M.M. Microcystin-LR and okadaic acid-induced cellular effects: A dualistic response. FEBS Lett. 2004, 557, 1–8, doi:10.1016/S0014-5793(03)01447-9.
[82]  Florez-Barros, F.; Prado-Alvarez, M.; Mendez, J.; Fernandez-Tajes, J. Evaluation of genotoxicity in gills and hemolymph of clam Ruditapes decussatus fed with the toxic dinoflagellate Prorocentrum lima. J. Toxicol. Environ. Health A 2011, 74, 971–979, doi:10.1080/15287394.2011.582025.
[83]  Carvalho Pinto-Silva, C.R.; Ferreira, J.F.; Costa, R.H.; Belli Filho, P.; Creppy, E.E.; Matias, W.G. Micronucleus induction in mussels exposed to okadaic acid. Toxicon 2003, 41, 93–97, doi:10.1016/S0041-0101(02)00214-3.
[84]  Carvalho Pinto-Silva, C.R.; Creppy, E.E.; Matias, W.G. Micronucleus test in mussels Perna perna fed with the toxic dinoflagellate Prorocentrum lima. Arch. Toxicol. 2005, 79, 422–426, doi:10.1007/s00204-004-0645-1.
[85]  Malagoli, D.; Casarini, L.; Ottaviani, E. Effects of the marine toxins okadaic acid and palytoxin on mussel phagocytosis. Fish. Shellfish Immunol. 2008, 24, 180–186, doi:10.1016/j.fsi.2007.10.012.
[86]  Manfrin, C.; Dreos, R.; Battistella, S.; Beran, A.; Gerdol, M.; Varotto, L.; Lanfranchi, G.; Venier, P.; Pallavicini, A. Mediterranean mussel gene expression profile induced by okadaic acid exposure. Environ. Sci. Technol. 2010, 44, 8276–8283, doi:10.1021/es102213f.
[87]  Suarez-Ulloa, V.; Fernandez-Tajes, J.; Aguiar-Pulido, V.; Rivera-Casas, C.; Gonzalez-Romero, R.; Ausio, J.; Mendez, J.; Dorado, J.; Eirin-Lopez, J.M. The CHROMEVALOA Database: A Resource for the Evaluation of Okadaic Acid Contamination in the Marine Environment Based on the Chromatin-Associated Transcriptome of the Mussel Mytilus galloprovincialis. Mar. Drugs 2013, 11, 830–841, doi:10.3390/md11030830.
[88]  Valdiglesias, V.; Mendez, J.; Pasaro, E.; Cemeli, E.; Anderson, D.; Laffon, B. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells. Mutat. Res. 2010, 689, 74–79, doi:10.1016/j.mrfmmm.2010.05.004.
[89]  Wilson, J.T.; Pascoe, P.L.; Parry, J.M.; Dixon, D.R. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda). Mutat. Res. 1998, 399, 87–95, doi:10.1016/S0027-5107(97)00268-6.
[90]  Lee, R.F.; Steinert, S. Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat. Res. 2003, 544, 43–64, doi:10.1016/S1383-5742(03)00017-6.
[91]  Valdiglesias, V.; Laffon, B.; Pasaro, E.; Mendez, J. Evaluation of okadaic acid-induced genotoxicity in human cells using the micronucleus test and gammaH2AX analysis. J. Toxicol. Environ. Health A 2011, 74, 980–992, doi:10.1080/15287394.2011.582026.
[92]  Le Hegarat, L.; Puech, L.; Fessard, V.; Poul, J.M.; Dragacci, S. Aneugenic potential of okadaic acid revealed by the micronucleus assay combined with the FISH technique in CHO-K1 cells. Mutagenesis 2003, 18, 293–298, doi:10.1093/mutage/18.3.293.
[93]  Le Hegarat, L.; Fessard, V.; Poul, J.M.; Dragacci, S.; Sanders, P. Marine toxin okadaic acid induces aneuploidy in CHO-K1 cells in presence of rat liver postmitochondrial fraction, revealed by cytokinesis-block micronucleus assay coupled to FISH. Environ. Toxicol. 2004, 19, 123–128, doi:10.1002/tox.20004.
[94]  Hegaret, H.; da Silva, P.M.; Wikfors, G.H.; Haberkorn, H.; Shumway, S.E.; Soudant, P. In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs. Cell Biol. Toxicol. 2011, 27, 249–266, doi:10.1007/s10565-011-9186-6.
[95]  Garcia, A.; Cayla, X.; Guergnon, J.; Dessauge, F.; Hospital, V.; Rebollo, M.P.; Fleischer, A.; Rebollo, A. Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie 2003, 85, 721–726, doi:10.1016/j.biochi.2003.09.004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133