全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Cephalopods as Vectors of Harmful Algal Bloom Toxins in Marine Food Webs

DOI: 10.3390/md11093381

Keywords: marine toxins, harmful algal bloom, cephalopods, Octopus vulgaris, Dosidicus gigas, Sepia officinalis, strandings

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB) -related toxins in cephalopods (octopods, cuttlefishes and squids). These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers), saxitoxin (and its derivatives) and palytoxin (and palytoxin-like compounds) and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin) in several tissues, but mainly in the digestive gland (DG)—the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6%) is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas) is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs), these organisms accumulate them at the greatest extent in DG >> kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue) reaching 971 μg kg ?1 and palytoxin reaching 115 μg kg ?1 (the regulatory limit for PlTXs is 30 μg kg ?1 in shellfish). Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the Mediterranean area.

References

[1]  Smayda, T.J. What is a bloom? A commentary. Limnol. Oceanogr. 1997, 42, 1132–1136, doi:10.4319/lo.1997.42.5_part_2.1132.
[2]  Landsberg, J.H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 2002, 10, 113–390, doi:10.1080/20026491051695.
[3]  Smayda, T.J. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 1997, 42, 1137–1153, doi:10.4319/lo.1997.42.5_part_2.1137.
[4]  Kvitek, R.G.; DeGange, A.R.; Beitler, M.K. Paralytic shelfish poisoning toxins mediate feeding behavior of sea otters. Limnol. Oceanogr. 1991, 36, 393–404, doi:10.4319/lo.1991.36.2.0393.
[5]  Lefebvre, K.; Elder, N.; Hershberger, P.; Trainer, V.; Stehr, C.; Scholz, N. Dissolved saxitoxin causes transient inhibition of sensorimotor function in larval Pacific herring (Clupea harengus pallasi). Mar. Biol. 2005, 147, 1393–1402, doi:10.1007/s00227-005-0048-8.
[6]  Lefebvre, K.A.; Trainer, V.L.; Scholz, N.L. Morphological abnormalities and sensorimotor deficits in larval fish exposed to dissolved saxitoxin. Aquat. Toxicol. 2004, 66, 159–170, doi:10.1016/j.aquatox.2003.08.006.
[7]  Goldstein, T.; Zabka, T.S.; DeLong, R.L.; Wheeler, E.A.; Ylitalo, G.; Bargu, S.; Silver, M.; Leighfield, T.; van Dolah, F.; Langlois, G.; et al. The role of domoic acid in abortion and premature parturition of California sea lions (Zalophus californianus) on San Miguel Island, California. J. Wildl. Dis. 2009, 45, 91–108.
[8]  Gentien, P.; Arzul, G. Exotoxin production by Gyrodinium cf. aureolum (Dinophyceae). J. Mar. Biol. Assoc. UK 1990, 70, 571–581, doi:10.1017/S0025315400036596.
[9]  Shilo, M.; Aschner, M. Factors governing the toxicity of cultures containing the Phytoflagellate Prymnesium parvum Carter. J. Gen. Microbiol. 1953, 8, 333–343, doi:10.1099/00221287-8-3-333.
[10]  Bourdelais, A.J.; Tomas, C.R.; Naar, J.; Kubanek, J.; Baden, D.G. New fish-killing alga in coastal Delaware produces neurotoxins. Environ. Health Perspect. 2002, 110, 465–470, doi:10.1289/ehp.02110465.
[11]  De la Riva, G.T.; Johnson, C.K.; Gulland, F.M.D.; Langlois, G.W.; Heyning, J.E.; Rowles, T.K.; Mazet, J.A.K. Association of an unusual marine mammal mortality event with Pseudo-nitzschia spp. blooms along the southern california coastline. J. Wildl. Dis. 2009, 45, 109–121.
[12]  Fire, S.E.; Zhihong, W.; Berman, M.; Langlois, G.W.; Morton, S.L.; Sekula-Wood, E.; Benitez-Nelson, C.R. Trophic transfer of the harmful algal toxin domoic acid as a cause of death in a Minke whale (Balaenoptera acutorostrata) stranding in Southern California. Aquat. Mamm. 2010, 36, 342–350, doi:10.1578/AM.36.4.2010.342.
[13]  Geraci, J.R.; Anderson, D.M.; Timperi, R.J.; St. Aubin, D.J.; Early, G.A.; Prescott, J.H.; Mayo, C.A. Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Can. J. Fish. Aquat. Sci. 1989, 46, 1895–1898, doi:10.1139/f89-238.
[14]  Flewelling, L.J.; Naar, J.P.; Abbott, J.P.; Baden, D.G.; Barros, N.B.; Bossart, G.D.; Bottein, M.-Y.D.; Hammond, D.G.; Haubold, E.M.; Heil, C.A. Brevetoxicosis: Red tides and marine mammal mortalities. Nature 2005, 435, 755–756, doi:10.1038/nature435755a.
[15]  Glibert, P.M.; Landsberg, J.H.; Evans, J.J.; Al-Sarawi, M.A.; Faraj, M.; Al-Jarallah, M.A.; Haywood, A.; Ibrahem, S.; Klesius, P.; Powell, C. A fish kill of massive proportion in Kuwait Bay, Arabian Gulf, 2001: The roles of bacterial disease, harmful algae, and eutrophication. Harmful Algae 2002, 1, 215–231, doi:10.1016/S1568-9883(02)00013-6.
[16]  White, A.W. Dinoflagellate toxins as probable cause of an Atlantic herring (Clupea harengus harengus) kill, and pteropods as apparent vector. J. Fish. Board Can. 1977, 34, 2421–2424, doi:10.1139/f77-328.
[17]  White, A.W. Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnol. Oceanogr. 1981, 26, 103–109, doi:10.4319/lo.1981.26.1.0103.
[18]  White, A.W. Recurrence of kills of Atlantic herring (Clupea harengus harengus) caused by dinoflagellate toxins transferred through herbivorous zooplankton. Can. J. Fish. Aquat. Sci. 1980, 37, 2262–2265, doi:10.1139/f80-271.
[19]  Daneri, G.A.; Carlini, A.R.; Rodhouse, P.G.K. Cephalopod diet of the southern elephant seal, Mirounga leonina, at King George Island, South Shetland Islands. Antarct. Sci. 2000, 12, 16–19.
[20]  Clarke, M.; Goodall, N. Cephalopods in the diets of three odontocete cetacean species stranded at Tierra del Fuego, Globicephala melaena (Traill, 1809), Hyperoodon planifrons Flower, 1882 and Cephalorhynchus commersonii (Lacepede, 1804). Antarct. Sci. 1994, 6, 149–154.
[21]  Pauly, D.; Trites, A.W.; Capuli, E.; Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 1998, 55, 467–481, doi:10.1006/jmsc.1997.0280.
[22]  Brock, R.E. Preliminary study of the feeding habits of pelagic fish around Hawaiian fish aggregation devices enhance local fisheries productivity? Bull. Mar. Sci. 1985, 37, 40–49.
[23]  Stillwell, C.E.; Kohler, N.E. Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 1982, 39, 407–414, doi:10.1139/f82-058.
[24]  Croxall, J.P.; Prince, P.A. Cephalopods as Prey I: Seabirds. Philos. Trans. R. Soc. Lond. B 1996, 351, 1023–1043, doi:10.1098/rstb.1996.0091.
[25]  Nixon, M. Capture of prey, diet and feeding of Sepia officinalis and Octopus vulgaris (Mollusca: Cephalopoda) from hatchling to adult. Vie et Milieu 1985, 35, 255–261.
[26]  Hanlon, R.T.; Messenger, J.B. Cephalopod Behaviour; Cambridge University Press: Cambridge, UK, 1996; p. 232.
[27]  Rodhouse, P.G.; Nigmatullin, C.M. Role as consumers. Philos. Trans. R. Soc. Lond. B 1996, 351, 1003–1022, doi:10.1098/rstb.1996.0090.
[28]  Debonnel, G.; Beauchesne, L.; Montigny, C. Domoic acid, the alleged “mussel toxin”, might produce its neurotoxic effect through kainate receptor activation: An electrophysiological study in the rat dorsal hippocampus. Can. J. Physiol. Pharmacol. 1989, 67, 29–33, doi:10.1139/y89-005.
[29]  Perl, T.M.; Bédard, L.; Kosatsky, T.; Hockin, J.C.; Todd, E.C.D.; Remis, R.S. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N. Engl. J. Med. 1990, 322, 1775–1780, doi:10.1056/NEJM199006213222504.
[30]  Todd, E.C.D. Domoic acid and amnesic shellfish poisoning—A review. J. Food Prot. 1993, 56, 69–83.
[31]  Bates, S.S.; Bird, C.J.; Freitas, A.S.W.; Foxall, R.; Gilgan, M.; Hanic, L.A.; Johnson, G.R.; McCulloch, A.W.; Odense, P.; Pocklington, R.; et al. Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from Eastern Prince Edward Island, Canada. Can. J. Fish. Aquat. Sci. 1989, 46, 1203–1215, doi:10.1139/f89-156.
[32]  Bates, S.S. Domoic-acid-producing diatoms: Another genus added! J. Phycol. 2000, 36, 978–983, doi:10.1046/j.1529-8817.2000.03661.x.
[33]  Rao, D.V.S.; Quilliam, M.A.; Pocklington, R. Domoic acid—A neurotoxic amino acid produced by the marine diatom Nitzschia pungens in culture. Can. J. Fish. Aquat. Sci. 1988, 45, 2076–2079, doi:10.1139/f88-241.
[34]  Garrison, D.L.; Conrad, S.M.; Eilers, P.P.; Waldron, E.M. Confirmation of domoic acid production by Pseudonitzschia australis (Bacillariophyceae) cultures. J. Phycol. 1992, 28, 604–607.
[35]  Lundholm, N.; Moestrup, ?.; Hasle, G.R.; Hoef-Emden, K. A study of the Pseudo-nitzschia pseudodelicatissima/cuspidata complex (Bacillariophyceae): What is P. pseudodelicatissima? J. Phycol. 2003, 39, 797–813, doi:10.1046/j.1529-8817.2003.02031.x.
[36]  Scholin, C.A.; Gulland, F.; Doucette, G.J.; Benson, S.; Busman, M.; Chavez, F.P.; Cordaro, J.; DeLong, R.; de Vogelaere, A.; Harvey, J. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 2000, 403, 80–84, doi:10.1038/47481.
[37]  Silvagni, P.A.; Lowenstine, L.J.; Spraker, T.; Lipscomb, T.P.; Gulland, F.M.D. Pathology of domoic acid toxicity in California Sea Lions (Zalophus californianus). Vet. Pathol. 2005, 42, 184–191, doi:10.1354/vp.42-2-184.
[38]  Work, T.; Beale, A.; Fritz, L.; Quilliam, M.; Silver, M.; Buck, K.; Wright, J. Domoic Acid Intoxication of Brown Pelicans and Cormorants in Santa Cruz, California. In Toxic PhytoplanktonBlooms in the Sea; Smayda, T.J., Shimizu, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 643–649.
[39]  Shumway, S.E.; Allen, S.M.; Dee Boersma, P. Marine birds and harmful algal blooms: Sporadic victims or under-reported events? Harmful Algae 2003, 2, 1–17, doi:10.1016/S1568-9883(03)00002-7.
[40]  Costa, P.R.; Rosa, R.; Sampayo, M.A.M. Tissue distribution of the amnesic shellfish toxin, domoic acid, in Octopus vulgaris from the Portuguese Coast. Mar. Biol. 2004, 144, 971–976, doi:10.1007/s00227-003-1258-6.
[41]  Costa, P.R.; Rosa, R.; Pereira, J.; Sampayo, M.A.M. Detection of domoic acid, the amnesic shellfish toxin, in the digestive gland of Eledone cirrhosa and E. moschata (Cephalopoda, Octopoda) from the Portuguese Coast. Aquat. Living Resour. 2005, 18, 395–400, doi:10.1051/alr:2005041.
[42]  Costa, P.R.; Rosa, R.; Duarte-Silva, A.; Brotas, V.; Sampayo, M.A.M. Accumulation, transformation and tissue distribution of domoic acid, the amnesic shellfish poisoning toxin, in the common cuttlefish, Sepia officinalis. Aquat. Toxicol. 2005, 74, 82–91, doi:10.1016/j.aquatox.2005.01.011.
[43]  Bargu, S.; Powell, C.L.; Wang, Z.; Doucette, G.J.; Silver, M.W. Note on the occurrence of Pseudo-nitzschia australis and domoic acid in squid from Monterey Bay, CA (USA). Harmful Algae 2008, 7, 45–51, doi:10.1016/j.hal.2007.05.008.
[44]  Braid, H.; Deeds, J.; DeGrasse, S.; Wilson, J.; Osborne, J.; Hanner, R. Preying on commercial fisheries and accumulating paralytic shellfish toxins: A dietary analysis of invasive Dosidicus gigas (Cephalopoda Ommastrephidae) stranded in Pacific Canada. Mar. Biol. 2012, 159, 25–31, doi:10.1007/s00227-011-1786-4.
[45]  Monteiro, A.; Costa, P.R. Distribution and selective elimination of paralytic shellfish toxins in different tissues of Octopus vulgaris. Harmful Algae 2011, 10, 732–737, doi:10.1016/j.hal.2011.06.004.
[46]  Robertson, A.; Stirling, D.; Robillot, C.; Llewellyn, L.; Negri, A. First report of saxitoxin in octopi. Toxicon 2004, 44, 765–771, doi:10.1016/j.toxicon.2004.08.015.
[47]  Milandri, A.; Ceredi, A.; Riccardi, E.; Gasperetti, L.; Susini, F.; Casotti, M.; Faiman, L.; Pigozzi, S. Impact of Ostreopsis Ovata on Marine Benthic Communities: Accumulation of Palytoxins in Mussels, Sea Urchins and Octopuses from Italy. In Proceedings of ICHA14 Conference, Crete, Greek, 1–5 November 2010; pp. 24–27.
[48]  Quilliam, M.A.; Wright, J.L.C. The amnesic shellfish poisoning mystery. Anal. Chem. 1989, 61, 1053–1060.
[49]  Wekell, J.C.; Hurst, J.; Lefebvre, K.A. The origin of the regulatory limits for PSP and ASP toxins in shellfish. J. Shellfish Res. 2004, 23, 927–930.
[50]  Bargu, S.; Powell, C.L.; Coale, S.L.; Busman, M.; Doucette, G.J.; Silver, M.W. Krill: A potential vector for domoic acid in marine food webs. Mar. Ecol. Prog. Ser. 2002, 237, 209–216, doi:10.3354/meps237209.
[51]  Lincoln, J.; Turner, J.; Bates, S.; Léger, C.; Gauthier, D. Feeding, egg production, and egg hatching success of the copepods Acartia tonsa and Temora longicornis on diets of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-nitzschia pungens. Hydrobiologia 2001, 453–454, 107–120, doi:10.1023/A:1013163816771.
[52]  Tester, P.A.; Pan, Y.; Doucette, G.J. Accumulation of Domoic Acid Activity in Copepods. In Proceedings of the 9th International Conference on Harmful Algal Blooms, Hobart, Australia, 7–11 February 2000; Hallegraeff, G.M.B., Blackburn, S.I., Bolch, C.J., Lewis, R.J., Eds.; UNESCO: Hobart, Australia, 2001; pp. 418–420.
[53]  Lefebvre, K.; Silver, M.; Coale, S.; Tjeerdema, R. Domoic acid in planktivorous fish in relation to toxic Pseudo-nitzschia cell densities. Mar. Biol. 2002, 140, 625–631, doi:10.1007/s00227-001-0713-5.
[54]  Lefebvre, K.A.; Dovel, S.L.; Silver, M.W. Tissue distribution and neurotoxic effects of domoic acid in a prominent vector species, the northern anchovy Engraulis mordax. Mar. Biol. 2001, 138, 693–700, doi:10.1007/s002270000509.
[55]  Vale, P.; Sampayo, M.A.M. Domoic acid in Portuguese shellfish and fish. Toxicon 2001, 39, 893–904, doi:10.1016/S0041-0101(00)00229-4.
[56]  Costa, P.R.; Garrido, S. Domoic acid accumulation in the sardine Sardina pilchardus and its relationship to Pseudo-nitzschia diatom ingestion. Mar. Ecol. Prog. Ser. 2004, 284, 261–268, doi:10.3354/meps284261.
[57]  Costa, P.R.; Botelho, M.J.; Rodrigues, S.M. Accumulation of paralytic shellfish toxins in digestive gland of Octopus vulgaris during bloom events including the dinoflagellate Gymnodinium catenatum. Mar. Pollut. Bull. 2009, 58, 1747–1750, doi:10.1016/j.marpolbul.2009.08.005.
[58]  Oshima, Y. Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J. AOAC Int. 1995, 78, 528–532.
[59]  Robineau, B.; Gagné, J.A.; Fortier, L.; Cembella, A.D. Potential impact of a toxic dinoflagellate (Alexandrium excavatum) bloom on survival of fish and crustacean larvae. Mar. Biol. 1991, 108, 293–301, doi:10.1007/BF01344344.
[60]  Samson, J.C.; Shumway, S.E.; Weis, J.S. Effects of the toxic dinoflagellate, Alexandrium fundyense on three species of larval fish: A food-chain approach. J. Fish Biol. 2008, 72, 168–188, doi:10.1111/j.1095-8649.2007.01698.x.
[61]  Jester, R.; Baugh, K.; Lefebvre, K. Presence of Alexandrium catenella and paralytic shellfish toxins in finfish, shellfish and rock crabs in Monterey Bay, California, USA. Mar. Biol. 2009, 156, 493–504, doi:10.1007/s00227-008-1103-z.
[62]  Costa, P.R.; Botelho, M.J.; Lefebvre, K.A. Characterization of paralytic shellfish toxins in seawater and sardines (Sardina pilchardus) during blooms of Gymnodinium catenatum. Hydrobiologia 2010, 655, 89–97, doi:10.1007/s10750-010-0406-5.
[63]  Mianzan, H.W.; Pájaro, M.; Machinandiarena, L.; Cremonte, F. Salps: Possible vectors of toxic dinoflagellates? Fish. Res. 1997, 29, 193–197, doi:10.1016/S0165-7836(96)00526-7.
[64]  Lage, S.; Reis Costa, P. Paralytic shellfish toxins in the Atlantic horse mackerel (Trachurus trachurus) over a bloom of Gymnodinium catenatum: The prevalence of decarbamoylsaxitoxin in the marine food web. Sci. Mar. 2013, 77, 13–17, doi:10.3989/scimar.03701.28C.
[65]  Tanti, J.F.; Grémeaux, T.; Van Obberghen, E.; le Marchand-Brustel, Y. Effects of okadaic acid, an inhibitor of protein phosphatases-1 and -2A, on glucose transport and metabolism in skeletal muscle. J. Biol. Chem. 1991, 266, 2099–2103.
[66]  Maneiro, I.; Frangópulos, M.; Guisande, C.; Fernández, M.; Reguera, B.; Riveiro, I. Zooplankton as a potential vector of diarrhetic shellfish poisoning toxins through the food web. Mar. Ecol. Prog. Ser. 2000, 201, 155–163, doi:10.3354/meps201155.
[67]  Krock, B.; Seguel, C.G.; Valderrama, K.; Tillmann, U. Pectenotoxins and yessotoxin from arica bay, north chile as determined by tandem mass spectrometry. Toxicon 2009, 54, 364–367, doi:10.1016/j.toxicon.2009.04.013.
[68]  Paz, B.; Riobó, P.; Luisa Fernández, M.; Fraga, S.; Franco, J.M. Production and release of yessotoxins by the dinoflagellates Protoceratium reticulatum and Lingulodinium polyedrum in culture. Toxicon 2004, 44, 251–258, doi:10.1016/j.toxicon.2004.05.021.
[69]  Miles, C.O.; Samdal, I.A.; Aasen, J.A.; Jensen, D.J.; Quilliam, M.A.; Petersen, D.; Briggs, L.M.; Wilkins, A.L.; Rise, F.; Cooney, J.M. Evidence for numerous analogs of yessotoxin in Protoceratium reticulatum. Harmful Algae 2005, 4, 1075–1091, doi:10.1016/j.hal.2005.03.005.
[70]  Rhodes, L.; McNabb, P.; de Salas, M.; Briggs, L.; Beuzenberg, V.; Gladstone, M. Yessotoxin production by Gonyaulax spinifera. Harmful Algae 2006, 5, 148–155, doi:10.1016/j.hal.2005.06.008.
[71]  Riccardi, M.; Guerrini, F.; Roncarati, F.; Milandri, A.; Cangini, M.; Pigozzi, S.; Riccardi, E.; Ceredi, A.; Ciminiello, P.; Dell’Aversano, C. Gonyaulax spinifera from the Adriatic sea: Toxin production and phylogenetic analysis. Harmful Algae 2009, 8, 279–290, doi:10.1016/j.hal.2008.06.008.
[72]  Krock, B.; Tillmann, U.; John, U.; Cembella, A.D. Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea. Harmful Algae 2009, 8, 254–263, doi:10.1016/j.hal.2008.06.003.
[73]  Wandscheer, C.B.; Vilarin?o, N.; Espin?a, B.A.; Louzao, M.C.; Botana, L.M. Human muscarinic acetylcholine receptors are a target of the marine toxin 13-desmethyl C spirolide. Chem. Res. Toxicol. 2010, 23, 1753–1761, doi:10.1021/tx100210a.
[74]  Vasconcelos, V.; Azevedo, J.; Silva, M.; Ramos, V. Effects of marine toxins on the reproduction and early stages development of aquatic organisms. Mar. Drugs 2010, 8, 59–79, doi:10.3390/md8010059.
[75]  Landsberg, J.H.; Steidinger, K. A historical review of Gymnodinium breve red tides implicated in mass mortalities of the manatee (Trichechus manatus latirostris) in Florida, USA. In Proceedings of the 8th International Conference on Harmful Algae, Vigo, Spain, 25–29 June 1997; pp. 97–100.
[76]  Bagnis, R.; Chanteau, S.; Chungue, E.; Hurtel, J.; Yasumoto, T.; Inoue, A. Origins of ciguatera fish poisoning: A new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. Toxicon 1980, 18, 199–208, doi:10.1016/0041-0101(80)90074-4.
[77]  Usami, M.; Satake, M.; Ishida, S.; Inoue, A.; Kan, Y.; Yasumoto, T. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. J. Am. Chem. Soc. 1995, 117, 5389–5390, doi:10.1021/ja00124a034.
[78]  Wang, D.-Z. Neurotoxins from marine dinoflagellates: A brief review. Mar. Drugs 2008, 6, 349–371, doi:10.3390/md6020349.
[79]  Shears, N.T.; Ross, P.M. Blooms of benthic dinoflagellates of the genus Ostreopsis; An increasing and ecologically important phenomenon on temperate reefs in New Zealand and worldwide. Harmful Algae 2009, 8, 916–925, doi:10.1016/j.hal.2009.05.003.
[80]  Rhodes, L.; Towers, N.; Briggs, L.; Munday, R.; Adamson, J. Uptake of palytoxin-like compounds by shellfish fed Ostreopsis siamensis (Dinophyceae). N. Z. J. Mar. Freshw. Res. 2002, 36, 631–636, doi:10.1080/00288330.2002.9517118.
[81]  Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Magno, G.S.; Tartaglione, L.; Grillo, C.; Melchiorre, N. The genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal. Chem. 2006, 78, 6153–6159, doi:10.1021/ac060250j.
[82]  Totti, C.; Accoroni, S.; Cerino, F.; Cucchiari, E.; Romagnoli, T. Ostreopsis ovata bloom along the Conero Riviera (Northern Adriatic Sea): Relationships with environmental conditions and substrata. Harmful Algae 2010, 9, 233–239, doi:10.1016/j.hal.2009.10.006.
[83]  Valverde, I.; Lago, J.; Vieites, J.M.; Cabado, A.G. In vitro approaches to evaluate palytoxin-induced toxicity and cell death in intestinal cells. J. Appl. Toxicol. 2008, 28, 294–302, doi:10.1002/jat.1278.
[84]  Gorbi, S.; Bocchetti, R.; Binelli, A.; Bacchiocchi, S.; Orletti, R.; Nanetti, L.; Raffaelli, F.; Vignini, A.; Accoroni, S.; Totti, C. Biological effects of palytoxin-like compounds from Ostreopsis cf. ovata: A multibiomarkers approach with mussels Mytilus galloprovincialis. Chemosphere 2012, 89, 623–632.
[85]  Rosa, R.; Dierssen, H.M.; Gonzalez, L.; Seibel, B.A. Ecological biogeography of cephalopod molluscs in the atlantic ocean: Historical and contemporary causes of coastal diversity patterns. Glob. Ecol. Biogeogr. 2008, 17, 600–610, doi:10.1111/j.1466-8238.2008.00397.x.
[86]  Rosa, R.; Dierssen, H.M.; Gonzalez, L.; Seibel, B.A. Large-scale diversity patterns of cephalopods in the Atlantic open ocean and deep sea. Ecology 2008, 89, 3449–3461, doi:10.1890/08-0638.1.
[87]  Rosa, R.; Gonzalez, L.; Dierssen, H.M.; Seibel, B.A. Environmental determinants of latitudinal size-trends in cephalopods. Mar. Ecol. Prog. Ser. 2012, 464, 153–165, doi:10.3354/meps09822.
[88]  Wells, M.J. Oxygen extraction and jet propulsion in cephalopods. Can. J. Zool. 1988, 68, 815–824, doi:10.1139/z90-117.
[89]  Wells, M.J.; Wells, J. The circulatory response to acute hypoxia in Octopus. J. Exp. Biol. 1983, 104, 59–71.
[90]  Wells, M.J.; Wells, J. Blood flow in acute hypoxia in a cephalopod. J. Exp. Biol. 1986, 122, 345–353.
[91]  Eno, C.N. The morphometrics of cephalopod gills. J. Mar. Biol. Assoc. UK 1994, 74, 687–706, doi:10.1017/S0025315400047743.
[92]  Hanlon, R.T.; Chiao, C.C.; M?thger, L.M.; Barbosa, A.; Buresch, K.C.; Chubb, C. Cephalopod dynamic camouflage: Bridging the continuum between background matching and disruptive coloration. Philos. Trans. R. Soc. Lond. B 2009, 364, 429–437, doi:10.1098/rstb.2008.0270.
[93]  Rosa, R.; Marques, A.M.; Nunes, M.L.; Bandarra, N.; Reis, C.S. Spatial-temporal changes in dimethyl acetal (octadecanal) levels of Octopus vulgaris (Mollusca, Cephalopoda): Relation to feeding ecology. Sci. Mar. 2004, 68, 227–236.
[94]  Markaida, U. Food and feeding of jumbo squid Dosidicus gigas in the Gulf of California and adjacent waters after the 1997–98 El Ni?o event. Fish. Res. 2006, 79, 16–27, doi:10.1016/j.fishres.2006.02.016.
[95]  Castro, B.G.; Guerra, A. The diet of Sepia officinalis (Linaeus, 1785) and Sepia elegans (Orbigny, 1835) (Cephalopoda, Sepioidea) from the Ria de Vigo (NW Spain). Sci. Mar. 1990, 54, 375–388.
[96]  Coelho, M.; Domingues, P.; Balguerias, E.; Fernandez, M.; Andrade, J.P. A comparative study of the diet of Loligo vulgaris (Lamarck, 1799) (Mollusca: Cephalopoda) from the south coast of Portugal and the Saharan Bank (central-east Atlantic). Fish. Res. 1997, 29, 245–255, doi:10.1016/S0165-7836(96)00540-1.
[97]  Cortez, T.; Castro, B.G.; Guerra, A. Feeding dynamics of Octopus mimus (Mollusca: Cephalopoda) in northern Chile waters. Mar. Biol. 1995, 123, 497–503, doi:10.1007/BF00349228.
[98]  Smale, M.J.; Buchan, P.R. Biology of Octopus vulgaris off the east coast of South Africa. Mar. Biol. 1981, 65, 1–12, doi:10.1007/BF00397061.
[99]  Ambrose, R.F.; Nelson, B. Predation by Octopus vulgaris in the Mediterrean. PSZNI Mar. Ecol. 1983, 4, 251–261, doi:10.1111/j.1439-0485.1983.tb00299.x.
[100]  Altman, J.S. The behaviour of Octopus vulgaris Lam, in its natural habitat: A pilot study. Underw. Assoc. Rep. 1967, 1966, 77–83.
[101]  Nigmatullin, C.M.; Ostapenko, A. Feeding of Octopus vulgaris Lam. from the Northwest African Coast. ICES CM 1976, 1976, 15.
[102]  Guerra, A. Sobre la alimentacion y el comportamiento alimentario de Octopus vulgaris. Invest. Pesq. 1978, 42, 351–364.
[103]  Sanchez, P.; Obarti, R.; Okutani, T.; O’Dor, R.K.; Kubodera, T. The Biology and Fishery of Octopus vulgaris Caught with Clay Pots on the Spanish Mediterranean Coast. In Recent Advances in Cephalopod Fisheries Biology; Tokay University Press: Tokyo, Japan, 1993; pp. 477–487.
[104]  Quetglas, A.; Alemany, F.; Carbonell, A.; Merella, P.; Sanchez, P. Biology and fishery of Octopus vulgaris Cuvier, 1797, caught by trawlers in Mallorca (Balearic Sea, Western Mediterraneam). Fish. Res. 1998, 36, 237–249, doi:10.1016/S0165-7836(98)00093-9.
[105]  Villanueva, R. Decapod crab zoeae as food for rearing cephalopod paralarvae. Aquaculture 1994, 128, 143–152, doi:10.1016/0044-8486(94)90109-0.
[106]  Boyle, P.; Rodhouse, P.G. Cephalopods: Ecology and Fisheries; Blackwell Publishing: Oxford, UK, 2005.
[107]  Rosa, R.; Graham, P.; O’Dor, R. Advances in Squid Biology, Ecology and Fisheries, Volume I—Myopsid Squids; Nova Publishers: New York, NY, USA, 2013. in press.
[108]  Rosa, R.; Graham, P.; O’Dor, R. Advances in Squid Biology, Ecology and Fisheries, Volume II—Oegopsid Squids; Nova Publishers: New York, NY, USA. in press.
[109]  Rosa, R.; Seibel, B.A. Metabolic physiology of the humboldt squid, Dosidicus gigas: Implications for vertical migration in a pronounced oxygen minimum zone. Prog. Oceanogr. 2010, 86, 72–80, doi:10.1016/j.pocean.2010.04.004.
[110]  Markaida, U.; Sosa-Nishizaki, O. Food and feeding habits of jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) from the Gulf of California, Mexico. J. Mar. Biol. Assoc. UK 2003, 83, 507–522, doi:10.1017/S0025315403007434h.
[111]  Rosa, R.; Costa, P.R.; Bandarra, N.; Nunes, M.L. Changes in tissue biochemical composition and energy reserves associated with sexual maturation of Illex coindetii and Todaropsis eblanae. Biol. Bull. 2005, 208, 100–113, doi:10.2307/3593118.
[112]  Grisley, M.S.; Boyle, P.R. Recognition of food in Octopus digestive tract. J. Exp. Mar. Biol. Ecol. 1988, 118, 7–32, doi:10.1016/0022-0981(88)90119-0.
[113]  Costa, P.R.; Pereira, J. Ontogenic differences in the concentration of domoic acid in the digestive gland of male and female Octopus vulgaris. Aquat. Biol. 2010, 9, 221–225, doi:10.3354/ab00255.
[114]  García, B.G.; Giménez, F.A. Influence of diet on ongrowing and nutrient utilization in the common octopus (Octopus vulgaris). Aquaculture 2002, 211, 171–182, doi:10.1016/S0044-8486(01)00788-8.
[115]  Lage, S.; Raimundo, J.; Brotas, V.; Costa, P.R. Detection and sub-cellular distribution of the amnesic shellfish toxin, domoic acid, in the digestive gland of Octopus vulgaris during periods of toxin absence. Mar. Biol. Res. 2012, 8, 784–789, doi:10.1080/17451000.2012.659668.
[116]  Cuénot, K.; Bruntz, V. Recherches chimiques sur les coeurs branchiaux des Céphalopodes. Démonstration du r?le excreteur des cellules qui éliminenent le carmin ammoniacal des injections physiologiques. Arch. Zool. Exp. Gén. 1908, 9, 49–53.
[117]  Schipp, R.; Hevert, F. Ultrafiltration in the branchial heart appendage of dibranchiate cephalopods: A comparative ultrastructural and physiological study. J. Exp. Biol. 1981, 92, 23–35.
[118]  Nakahara, M.; Koyanagi, T.; Ueda, T.; Shimizu, C. Peculiar accumulation of cobalt-60 by the branchial heart of Octopus. Bull. Jpn. Soc. Sci. Fish. 1979, 45, 539.
[119]  Nakahara, M.; Shimizu, C. Cobalt-binding substances in the branchial heart of Octopus vulgaris. Nippon Suisan Gakkaishi 1985, 51, 1195–1199, doi:10.2331/suisan.51.1195.
[120]  Miramand, P.; Guary, J. High concentrations of some heavy metals in tissues of the Mediterranean octopus. Bull. Environ. Contam. Toxicol. 1980, 24, 783–788, doi:10.1007/BF01608189.
[121]  Martin, A.W.; Aldrich, F.A. Comparison of hearts and branchial heart appendages in some cephalopods. Can. J. Zool. 1970, 48, 751–756, doi:10.1139/z70-132.
[122]  Boyle, P.R. Eledone Cirrhosa. In Cephalopod Life Cycles: Species Accounts; Boyle, P.R., Ed.; Academic Press: London, UK, 1983; Volume 1, pp. 365–386.
[123]  Sanchez, P. Regime alimentaire d’Eledone cirrosa (Lamarck, 1798) (Mollusca, Cephalopoda) dans la mer Catalane. Rapp. Comm. Int. Mer Medit. 1981, 27, 209–212.
[124]  Grisley, M.; Boyle, P.; Pierce, G.; Key, L. Factors affecting prey handling in lesser octopus (Eledone cirrhosa) feeding on crabs (Carcinus maenas). J. Mar. Biol. Assoc. UK 1999, 79, 1085–1090, doi:10.1017/S0025315499001332.
[125]  Mangold, K. Eledone Moschata. In Cephalopod Life Cycles: Species Accounts; Boyle, P.R., Ed.; Academic Press: London, UK, 1983; Volume 1, pp. 387–400.
[126]  Davis, R.; Jaquet, N.; Gendron, D.; Markaida, U.; Bazzino, G.; Gilly, W. Diving behavior of sperm whales in relation to behavior of a major prey species, the jumbo squid, in the Gulf of California, Mexico. Mar. Ecol. Prog. Ser. 2007, 333, 291–302, doi:10.3354/meps333291.
[127]  Fire, S.E.; Wang, Z.; Leighfield, T.A.; Morton, S.L.; McFee, W.E.; McLellan, W.A.; Litaker, R.W.; Tester, P.A.; Hohn, A.A.; Lovewell, G.; et al. Domoic acid exposure in pygmy and dwarf sperm whales (Kogia spp.) from southeastern and mid-Atlantic U.S. waters. Harmful Algae 2009, 8, 658–664, doi:10.1016/j.hal.2008.12.002.
[128]  Gleibs, S.; Mebs, D. Distribution and sequestration of palytoxin in coral reef animals. Toxicon 1999, 37, 1521–1527, doi:10.1016/S0041-0101(99)00093-8.
[129]  Mebs, D. Occurrence and sequestration of toxins in food chains. Toxicon 1998, 36, 1519–1522, doi:10.1016/S0041-0101(98)00143-3.
[130]  Li, S.-C.; Wang, W.-X. Radiotracer studies on the feeding of two marine bivalves on the toxic and nontoxic dinoflagellate Alexandrium tamarense. J. Exp. Mar. Biol. Ecol. 2001, 263, 65–75, doi:10.1016/S0022-0981(01)00294-5.
[131]  Pimentel, M.S.; Trübenbach, K.; Faleiro, F.; Boavida-Portugal, J.; Repolho, T.; Rosa, R. Impact of ocean warming on the early ontogeny of cephalopods: A metabolic approach. Mar. Biol. 2012, 159, 2051–2059, doi:10.1007/s00227-012-1991-9.
[132]  Rosa, R.; Pimentel, M.S.; Boavida-Portugal, J.; Teixeira, T.; Trübenbach, K.; Diniz, M. Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS One 2012, 7, e38282.
[133]  Liu, H.; Kelly, M.; Campbell, D.; Fang, J.; Zhu, J. Accumulation of domoic acid and its effect on juvenile king scallop Pecten maximus (Linnaeus, 1758). Aquaculture 2008, 284, 224–230, doi:10.1016/j.aquaculture.2008.07.003.
[134]  Tiedeken, J.A.; Ramsdell, J.S.; Ramsdell, A.F. Developmental toxicity of domoic acid in zebrafish (Danio rerio). Neurotoxicol. Teratol. 2005, 27, 711–717, doi:10.1016/j.ntt.2005.06.013.
[135]  Ajuzie, C.C. Palatability and fatality of the dinoflagellate Prorocentrum lima to Artemia salina. J. Appl. Phycol. 2007, 19, 513–519, doi:10.1007/s10811-007-9164-9.
[136]  Zhenxing, W.; Yinglin, Z.; Mingyuan, Z.; Zongling, W.; Dan, W. Effects of toxic Alexandrium species on the survival and feeding rates of brine shrimp, Artemia salina. Acta Ecol. Sin. 2006, 26, 3942–3947, doi:10.1016/S1872-2032(07)60004-3.
[137]  Perez, M.; Sulkin, S. Palatability of autotrophic dinoflagellates to newly hatched larval crabs. Mar. Biol. 2005, 146, 771–780, doi:10.1007/s00227-004-1482-8.
[138]  Sulkin, S.; Hinz, S.; Rodriguez, M. Effects of exposure to toxic and non-toxic dinoflagellates on oxygen consumption and locomotion in stage 1 larvae of the crabs Cancer oregonensis and C. magister. Mar. Biol. 2003, 142, 205–211.
[139]  Gosselin, S.; Fortier, L.; Gagné, J. Vulnerability of marine fish larvae to the toxic dinoflagellate Protogonyaulax tamarensis. Mar. Ecol. Prog. Ser. 1989, 57, 1–10, doi:10.3354/meps057001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133