全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Epigonal Conditioned Media from Bonnethead Shark, Sphyrna tiburo, Induces Apoptosis in a T-Cell Leukemia Cell Line, Jurkat E6-1

DOI: 10.3390/md11093224

Keywords: epigonal organ, bonnethead shark, Jurkat, apoptosis, tumor cell line

Full-Text   Cite this paper   Add to My Lib

Abstract:

Representatives of Subclass Elasmobranchii are cartilaginous fish whose members include sharks, skates, and rays. Because of their unique phylogenetic position of being the most primitive group of vertebrates to possess all the components necessary for an adaptive immune system, the immune regulatory compounds they possess may represent the earliest evolutionary forms of novel compounds with the potential for innovative therapeutic applications. Conditioned medium, generated from short term culture of cells from the epigonal organ of bonnethead sharks ( Sphyrna tiburo), has been shown to have potent reproducible cytotoxic activity against a variety of human tumor cell lines in vitro. Existing data suggest that epigonal conditioned medium (ECM) exerts this cytotoxic activity through induction of apoptosis in target cells. This manuscript describes apoptosis induction in a representative tumor cell line, Jurkat E6-1, in response to treatment with ECM at concentrations of 1 and 2 mg/mL. Data indicate that ECM exposure initiates the mitochondrial pathway of apoptosis through activation of caspase enzymes. Future purification of ECM components may result in the isolation of an immune-regulatory compound with potential therapeutic benefit for treatment of human?cancer.

References

[1]  Luer, C.A.; Walsh, C.J.; Bodine, A.B. The immune system of sharks, skates, and rays. In Biology and Sharks and Their Relatives; Carrier, J.C., Musick, J.A., Heithaus, M.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 369–395.
[2]  Luer, C.A.; Walsh, C.J.; Bodine, A.B. Recent advances in elasmobranch immunology. In The Biology of Sharks and Their Relatives; Carrier, J.C., Heithaus, M.R., Musick, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 403–420.
[3]  Litman, G.W.; Anderson, M.K.; Rast, J.P. Evolution of antigen binding receptors. Ann. Rev. Immunol. 1999, 17, 109–147, doi:10.1146/annurev.immunol.17.1.109.
[4]  Flajnik, M.F.; Rumfelt, L.L. The immune system of cartilaginous fish. Curr. Top. Microbiol. Immunol. 2000, 248, 249–270, doi:10.1007/978-3-642-59674-2_11.
[5]  Walsh, C.J.; Luer, C.A.; Noyes, D.R.; Smith, C.A.; Gasparetto, M.; Bhalla, K.N. Characterization of shark immune cell factor (Sphyrna tiburo epigonal factor, STEF) that inhibits tumor cell growth by inhibiting S-phase and inducing apoptosis via the TRAIL pathway. FASEB J. 2004, 18, A60.
[6]  Walsh, C.J.; Luer, C.A.; Bodine, A.B.; Smith, C.A.; Cox, H.L.; Noyes, D.R.; Maura, G. Elasmobranch immune cells as a source of novel tumor cell inhibitors: Implications for public health. Integr. Comp. Biol. 2006, 46, 1072–1081, doi:10.1093/icb/icl041.
[7]  Schneider, U.; Schwenk, H.U.; Bornkamm, G. Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer 1977, 19, 621–626, doi:10.1002/ijc.2910190505.
[8]  Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516, doi:10.1080/01926230701320337.
[9]  Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63, doi:10.1016/0022-1759(83)90303-4.
[10]  Koopman, G.; Reutelingsperger, C.P.; Kuijten, G.A.; Keehnen, R.M.; Pals, S.T.; van Oers, M.H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994, 84, 1415–1420.
[11]  Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J. 1997, 326, 1–16.
[12]  Ashkenazi, A.; Dixit, V.M. Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 1999, 11, 255–260, doi:10.1016/S0955-0674(99)80034-9.
[13]  Kashkar, H. X-linked inhibitor of apoptosis: a chemoresistance factor or a hollow promise. Clin. Cancer Res. 2010, 16, 4496–4502, doi:10.1158/1078-0432.CCR-10-1664.
[14]  Cao, X.; Pobezinskaya, Y.L.; Morgan, M.J.; Liu, Z.G. The role of TRADD in TRAIL-induced apoptosis and signaling. FASEB J. 2011, 25, 1353–1358, doi:10.1096/fj.10-170480.
[15]  Bratton, S.B.; Salvesen, G.S. Regulation of the Apaf-1-caspase-9 apoptosome. J. Cell Sci. 2010, 123, 3209–3214, doi:10.1242/jcs.073643.
[16]  Bagnoli, M.; Canevari, S.; Mezzanzanica, D. Cellular FLICE-inhibitory protein (c-FLIP) signalling: A key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int. J. Biochem. Cell Biol. 2010, 42, 210–213, doi:10.1016/j.biocel.2009.11.015.
[17]  Lavrik, I.N.; Krammer, P.H. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 2012, 19, 36–41, doi:10.1038/cdd.2011.155.
[18]  Krueger, A.; Schmitz, I.; Baumann, S.; Krammer, P.H.; Kirchhoff, S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J. Biol. Chem. 2001, 276, 20633–20640.
[19]  Wajant, H. Targeting the FLICE Inhibitory Protein (FLIP) in cancer therapy. Mol. Interv. 2003, 3, 124–127, doi:10.1124/mi.3.3.124.
[20]  Oliver, F.J.; Menissier-de Murcia, J.; de Murcia, G. Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am. J. Hum. Genet. 1999, 64, 1282–1288, doi:10.1086/302389.
[21]  Adams, J.M.; Cory, S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 2007, 19, 488–496.
[22]  Zeng, L.; Li, T.; Xu, D.C.; Liu, J.; Mao, G.; Cui, M.Z.; Fu, X.; Xu, X. Death receptor 6 induces apoptosis not through type I or type II pathways, but via a unique mitochondria-dependent pathway by interacting with Bax protein. J. Biol. Chem. 2012, 287, 29125–29133.
[23]  Aggarwal, B.B. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann. Rheum. Dis. 2000, 59 (Suppl. 1), i6–i16, doi:10.1136/ard.59.suppl_1.i6.
[24]  Leu, J.I.; George, D.L. Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria. Genes Dev. 2007, 21, 3095–3109, doi:10.1101/gad.1567107.
[25]  Altieri, D.C. Survivin in apoptosis control and cell cycle regulation in cancer. Prog. Cell Cycle Res. 2003, 5, 447–452.
[26]  Altieri, D.C. Survivin and apoptosis control. Adv. Cancer Res. 2003, 88, 31–52, doi:10.1016/S0065-230X(03)88303-3.
[27]  Mita, A.C.; Mita, M.M.; Nawrocki, S.T.; Giles, F.J. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res. 2008, 14, 5000–5005, doi:10.1158/1078-0432.CCR-08-0746.
[28]  Liu, X.; Yue, P.; Chen, S.; Hu, L.; Lonial, S.; Khuri, F.R.; Sun, S.Y. The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res. 2007, 67, 4981–4988, doi:10.1158/0008-5472.CAN-06-4274.
[29]  Conway, E.M.; Pollefeyt, S.; Steiner-Mosonyi, M.; Luo, W.; Devriese, A.; Lupu, F.; Bono, F.; Leducq, N.; Dol, F.; Schaeffer, P.; et al. Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology 2002, 123, 619–631, doi:10.1053/gast.2002.34753.
[30]  Johnson, M.E.; Howerth, E.W. Survivin: A bifunctional inhibitor of apoptosis protein. Vet. Pathol. 2004, 41, 599–607, doi:10.1354/vp.41-6-599.
[31]  Altieri, D.C. Survivin, cancer networks and pathway-directed drug discovery. Nature Rev. Cancer 2008, 8, 61–70, doi:10.1038/nrc2293.
[32]  Dohi, T.; Xia, F.; Altieri, D.C. Compartmentalized phosphorylation of IAP by protein kinase A regulates cytoprotection. Mol. Cell 2007, 27, 17–28, doi:10.1016/j.molcel.2007.06.004.
[33]  Grossman, D.; Kim, P.J.; Blanc-Brude, O.P.; Brash, D.E.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53. J. Clin. Invest. 2001, 108, 991–999.
[34]  O’Connor, D.S.; Grossman, D.; Plescia, J.; Li, F.; Zhang, H.; Villa, A.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. USA 2000, 97, 13103–13107, doi:10.1073/pnas.240390697.
[35]  Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000, 102, 33–42, doi:10.1016/S0092-8674(00)00008-8.
[36]  Lomonosova, E.; Chinnadurai, G. BH3-only proteins in apoptosis and beyond: An overview. Oncogene 2008, 27 (Suppl. 1), S2–S19, doi:10.1038/onc.2009.39.
[37]  Inohara, N.; Nunez, G. The NOD: A signaling module that regulates apoptosis and host defense against pathogens. Oncogene 2001, 20, 6473–6481, doi:10.1038/sj.onc.1204787.
[38]  Dufner, A.; Mak, T.W. CARD tricks: Controlling the interactions of CARD6 with RICK and microtubules. Cell Cycle 2006, 5, 797–800, doi:10.4161/cc.5.8.2635.
[39]  Dufner, A.; Pownall, S.; Mak, T.W. Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-kappaB activation. Proc. Natl. Acad. Sci. USA 2006, 103, 988–993, doi:10.1073/pnas.0510380103.
[40]  Banerjee, M.; Datta, M.; Majumder, P.; Mukhopadhyay, D.; Bhattacharyya, N.P. Transcription regulation of caspase-1 by R393 of HIPPI and its molecular partner HIP-1. Nucleic Acids Res. 2010, 38, 878–892, doi:10.1093/nar/gkp1011.
[41]  Manzl, C.; Krumschnabel, G.; Bock, F.; Sohm, B.; Labi, V.; Baumgartner, F.; Logette, E.; Tschopp, J.; Villunger, A. Caspase-2 activation in the absence of PIDDosome formation. J. Cell Biol. 2009, 185, 291–303, doi:10.1083/jcb.200811105.
[42]  Lin, Y.; Ma, W.; Benchimol, S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat. Genet. 2000, 26, 122–127, doi:10.1038/79102.
[43]  Rossi, D.; Gaidano, G. Messengers of cell death: Apoptotic signaling in health and disease. Haematologica 2003, 88, 212–218.
[44]  Zhang, L.; Fang, B. Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 2005, 12, 228–237, doi:10.1038/sj.cgt.7700792.
[45]  Chan, F.K.; Shisler, J.; Bixby, J.G.; Felices, M.; Zheng, L.; Appel, M.; Orenstein, J.; Moss, B.; Lenardo, M.J. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 2003, 278, 51613–51621, doi:10.1074/jbc.M305633200.
[46]  Sancho-Martinez, I.; Martin-Villalba, A. Tyrosine phosphorylation and CD95: A FAScinating switch. Cell Cycle 2009, 8, 838–842, doi:10.4161/cc.8.6.7906.
[47]  Lanave, C.; Santamaria, M.; Saccone, C. Comparative genomics: the evolutionary history of the Bcl-2 family. Gene 2004, 333, 71–79, doi:10.1016/j.gene.2004.02.017.
[48]  Martinon, F.; Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007, 14, 10–22, doi:10.1038/sj.cdd.4402038.
[49]  Zheng, C.; Kabaleeswaran, V.; Wang, Y.; Cheng, G.; Wu, H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: Affinity, specificity, and regulation. Mol. Cell 2010, 38, 101–113, doi:10.1016/j.molcel.2010.03.009.
[50]  Razmara, M.; Srinivasula, S.M.; Wang, L.; Poyet, J.L.; Geddes, B.J.; DiStefano, P.S.; Bertin, J.; Alnemri, E.S. CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J. Biol. Chem. 2002, 277, 13952–13958, doi:10.1074/jbc.M107811200.
[51]  Wiley, S.R.; Schooley, K.; Smolak, P.J.; Din, W.S.; Huang, C.P.; Nicholl, J.K.; Sutherland, G.R.; Smith, T.D.; Rauch, C.; Smith, C.A.; et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995, 3, 673–682, doi:10.1016/1074-7613(95)90057-8.
[52]  Pan, G.; Ni, J.; Wei, Y.F.; Yu, G.; Gentz, R.; Dixit, V.M. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997, 277, 815–818, doi:10.1126/science.277.5327.815.
[53]  Pan, G.; O’Rourke, K.; Chinnaiyan, A.M.; Gentz, R.; Ebner, R.; Ni, J.; Dixit, V.M. The receptor for the cytotoxic ligand TRAIL. Science 1997, 276, 111–113, doi:10.1126/science.276.5309.111.
[54]  Walczak, H.; Degli-Esposti, M.A.; Johnson, R.S.; Smolak, P.J.; Waugh, J.Y.; Boiani, N.; Timour, M.S.; Gerhart, M.J.; Schooley, K.A.; Smith, C.A.; Goodwin, R.G.; Rauch, C.T. TRAIL-R2: A novel apoptosis-mediating receptor for TRAIL. EMBO J. 1997, 16, 5386–5397, doi:10.1093/emboj/16.17.5386.
[55]  Clancy, L.; Mruk, K.; Archer, K.; Woelfel, M.; Mongkolsapaya, J.; Screaton, G.; Lenardo, M.J.; Chan, F.K. Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc. Natl. Acad. Sci. USA 2005, 102, 18099–18104, doi:10.1073/pnas.0507329102.
[56]  Daniels, R.A.; Turley, H.; Kimberley, F.C.; Liu, X.S.; Mongkolsapaya, J.; Ch’En, P.; Xu, X.N.; Jin, B.Q.; Pezzella, F.; Screaton, G.R. Expression of TRAIL and TRAIL receptors in normal and malignant tissues. Cell Res. 2005, 15, 430–438, doi:10.1038/sj.cr.7290311.
[57]  Ma, Y.; Yang, D.; Chen, Y. Analysis of TRAIL receptor expression using anti-TRAIL death receptor-5 monoclonal antibodies. Chin. Med. J. (Engl.) 2003, 116, 947–950.
[58]  LeBlanc, H.N.; Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003, 10, 66–75, doi:10.1038/sj.cdd.4401187.
[59]  Gross, A.; McDonnell, J.M.; Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999, 13, 1899–1911, doi:10.1101/gad.13.15.1899.
[60]  Merino, D.; Lalaoui, N.; Morizot, A.; Schneider, P.; Solary, E.; Micheau, O. Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol. Cell Biol. 2006, 26, 7046–7055, doi:10.1128/MCB.00520-06.
[61]  Degli-Esposti, M.A.; Dougall, W.C.; Smolak, P.J.; Waugh, J.Y.; Smith, C.A.; Goodwin, R.G. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997, 7, 813–820, doi:10.1016/S1074-7613(00)80399-4.
[62]  Degli-Esposti, M.A.; Smolak, P.J.; Walczak, H.; Waugh, J.; Huang, C.P.; DuBose, R.F.; Goodwin, R.G.; Smith, C.A. Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 1997, 186, 1165–1170, doi:10.1084/jem.186.7.1165.
[63]  Davidovich, I.A.; Levenson, A.S.; Levenson Chernokhvostov, V.V. Overexpression of DcR1 and survivin in genetically modified cells with pleiotropic drug resistance. Cancer Lett. 2004, 211, 189–197, doi:10.1016/j.canlet.2004.03.026.
[64]  Riccioni, R.; Pasquini, L.; Mariani, G.; Saulle, E.; Rossini, A.; Diverio, D.; Pelosi, E.; Vitale, A.; Chierichini, A.; Cedrone, M.; et al. TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica 2005, 90, 612–624.
[65]  Walsh, C.; Luer, C.A. Elasmobranch hematology: Identification of cell types and practical applications. In Elasmobranch Husbandry Manual, Proceedings of the First International Elasmobranch Husbandry Symposium, Orlando, FL, USA, 2001; Warmolts, D., Thoney, D., Hueter, R., Eds.; Ohio Biological Sruvey: Columbus, OH, USA, 2004; pp. 309–326.
[66]  Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275.
[67]  Cohen, L.Y.; Bourbonniere, M.; Sabbagh, L.; Bouchard, A.; Chew, T.; Jeannequin, P.; Lazure, C.; Sekaly, R.P. Notch1 antiapoptotic activity is abrogated by caspase cleavage in dying T lymphocytes. Cell Death Differ. 2005, 12, 243–254, doi:10.1038/sj.cdd.4401568.
[68]  Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034.
[69]  Espinosa, M.; Cantu, D.; Herrera, N.; Lopez, C.M.; De la Garza, J.G.; Maldonado, V.; Melendez-Zajgla, J. Inhibitors of apoptosis proteins in human cervical cancer. BMC Cancer 2006, 6, 45, doi:10.1186/1471-2407-6-45.
[70]  Dai, C.H.; Li, J.; Shi, S.B.; Yu, L.C.; Ge, L.P.; Chen, P. Survivin and Smac gene expressions but not livin are predictors of prognosis in non-small cell lung cancer patients treated with adjuvant chemotherapy following surgery. Jpn. J. Clin. Oncol. 2010, 40, 327–335, doi:10.1093/jjco/hyp165.
[71]  Robles, A.I.; Bemmels, N.A.; Foraker, A.B.; Harris, C.C. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res. 2001, 61, 6660–6664.
[72]  Will, B.; Siddiqi, T.; Jorda, M.A.; Shimamura, T.; Luptakova, K.; Staber, P.B.; Costa, D.B.; Steidl, U.; Tenen, D.G.; Kobayashi, S. Apoptosis induced by JAK2 inhibition is mediated by Bim and enhanced by the BH3 mimetic ABT-737 in JAK2 mutant human erythroid cells. Blood 2010, 115, 2901–2909, doi:10.1182/blood-2009-03-209544.
[73]  Petak, I.; Danam, R.P.; Tillman, D.M.; Vernes, R.; Howell, S.R.; Berczi, L.; Kopper, L.; Brent, T.P.; Houghton, J.A. Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ. 2003, 10, 211–217, doi:10.1038/sj.cdd.4401132.
[74]  Kataoka, T.; Schroter, M.; Hahne, M.; Schneider, P.; Irmler, M.; Thome, M.; Froelich, C.J.; Tschopp, J. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J. Immunol. 1998, 161, 3936–3942.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133