全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Glycosylated Porphyra-334 and Palythine-Threonine from the Terrestrial Cyanobacterium Nostoc commune

DOI: 10.3390/md11093124

Keywords: anhydrobiosis, antioxidant, mycosporine-like amino acid (MAA), Nostoc commune, UV protectant

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune ( N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments.

References

[1]  Potts, M. Nostoc. In The Ecology of Cyanobacteria; Whitton, B.A., Potts, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 465–504.
[2]  Novis, P.M.; Whitehead, D.; Gregorich, E.G.; Hunt, J.E.; Sparrow, A.D.; Hopkins, D.W.; Eleberling, B.; Greenfield, L.G. Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob. Chang. Biol. 2007, 13, 1224–1237, doi:10.1111/j.1365-2486.2007.01354.x.
[3]  Cameron, R.E. Species of Nostoc vaucher occurring in the Sonoran Desert in Arizona. Trans. Am. Microsc. Soc. 1962, 81, 379–384, doi:10.2307/3223790.
[4]  Lipman, C.B. The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull. Torr. Bot. Club 1941, 68, 664–666, doi:10.2307/2481755.
[5]  Scherer, S.; Ernst, A.; Chen, T.-W.; B?ger, P. Rewetting of drought-resistant blue-green algae: Time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 1984, 62, 418–423, doi:10.1007/BF00384277.
[6]  Satoh, K.; Hirai, M.; Nishio, J.; Yamaji, T.; Kashino, Y.; Koike, H. Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol. 2002, 43, 170–176, doi:10.1093/pcp/pcf020.
[7]  Tamaru, Y.; Takani, Y.; Yoshida, T.; Sakamoto, T. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 2005, 71, 7327–7333, doi:10.1128/AEM.71.11.7327-7333.2005.
[8]  Sakamoto, T.; Yoshida, T.; Arima, H.; Hatanaka, Y.; Takani, Y.; Tamaru, Y. Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycol. Res. 2009, 57, 66–73, doi:10.1111/j.1440-1835.2008.00522.x.
[9]  Potts, M. Desiccation tolerance: A simple process? Trends Microbiol. 2001, 9, 553–559, doi:10.1016/S0966-842X(01)02231-4.
[10]  Clegg, J.S. Cryptobiosis—A peculiar state of biological organization. Comp. Biochem. Physiol. Part B 2001, 128, 613–624, doi:10.1016/S1096-4959(01)00300-1.
[11]  Crowe, L.M. Lessons from nature: The role of sugars in anhydrobiosis. Comp. Biochem. Physiol. Part A 2002, 131, 505–513, doi:10.1016/S1095-6433(01)00503-7.
[12]  Billi, D.; Potts, M. Life and death of dried prokaryotes. Res. Microbiol. 2002, 153, 7–12, doi:10.1016/S0923-2508(01)01279-7.
[13]  Castenholz, R.W.; Garcia-Pichel, F. Cyanobacterial Responses to UV-Radiation. In The Ecology of Cyanobacteria; Whitton, B.A., Potts, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 591–611.
[14]  Castenholz, R.W.; Garcia-Pichel, F. Cyanobacterial Responses to UV Radiation. In Ecology of Cyanobacteria II; Whitton, B.A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2012; pp. 481–499.
[15]  Helm, R.F.; Potts, M. Extracellular Matrix (ECM). In Ecology of Cyanobacteria II; Whitton, B.A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2012; pp. 461–480.
[16]  Wright, D.J.; Smith, S.C.; Joardar, V.; Scherer, S.; Jervis, J.; Warren, A.; Helm, R.F.; Potts, M. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J. Biol. Chem. 2005, 280, 40271–40281.
[17]  Morsy, F.M.; Kuzuha, S.; Takani, Y.; Sakamoto, T. Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune. J. Gen. Appl. Microbiol. 2008, 54, 243–252, doi:10.2323/jgam.54.243.
[18]  Carreto, J.I.; Carignan, M.O. Mycosporine-like amino acids: Relevant secondary metabolites. Chemical and ecological aspects. Mar. Drugs 2011, 9, 387–446, doi:10.3390/md9030387.
[19]  Rastogi, R.P.; Sinha, R.P.; Singh, S.P.; H?der, D.-P. Photoprotective compounds from marine organisms. J. Ind. Microbiol. Biotechnol. 2010, 37, 537–558, doi:10.1007/s10295-010-0718-5.
[20]  Pallela, R.; Na-Young, Y.; Kim, S.-K. Anti-photoaging and photoprotective compounds derived from marine organisms. Mar. Drugs 2010, 8, 1189–1202, doi:10.3390/md8041189.
[21]  Shick, J.M.; Dunlap, W.C. Mycosporine-like amino acids and related gadusols: Biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 2002, 64, 223–262, doi:10.1146/annurev.physiol.64.081501.155802.
[22]  Sinha, R.P.; H?der, D.-P. UV-protectants in cyanobacteria. Plant Sci. 2008, 174, 278–289, doi:10.1016/j.plantsci.2007.12.004.
[23]  Rastogi, R.P.; Sinha, R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 2009, 27, 521–539.
[24]  Singh, S.P.; H?der, D.-P.; Sinha, R.P. Cyanobacteria and ultraviolet radiation (UVR) stress: Mitigation strategies. Ageing Res. Rev. 2010, 9, 79–90, doi:10.1016/j.arr.2009.05.004.
[25]  Jiang, H.; Gao, K.; Helbling, E.W. UV-Absorbing compounds in Porphyra haitanensis (Rhodophyta) with special references to effects of desiccation. J. Appl. Phycol. 2008, 20, 387–395, doi:10.1007/s10811-007-9268-2.
[26]  Wada, N.; Sakamoto, T.; Matsugo, S. Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Metabolites 2013, 3, 463–483, doi:10.3390/metabo3020463.
[27]  Hayashi, H.; Murata, N. Genetically Engineered Enhancement of Salt Tolerance in Higher Plants. In Stress Responses of Photosynthetic Organisms; Satoh, K., Murata, N., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 133–148.
[28]  Oren, A. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J. 1997, 14, 231–240, doi:10.1080/01490459709378046.
[29]  Matsui, K.; Nazifi, E.; Kunita, S.; Wada, N.; Matsugo, S.; Sakamoto, T. Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. J. Photochem. Photobiol. B 2011, 105, 81–89, doi:10.1016/j.jphotobiol.2011.07.003.
[30]  Matsui, K.; Nazifi, E.; Hirai, Y.; Wada, N.; Matsugo, S.; Sakamoto, T. The cyanobacterial UV-absorbing pigment scytonemin displays radical-scavenging activity. J. Gen. Appl. Microbiol. 2012, 58, 137–144, doi:10.2323/jgam.58.137.
[31]  Ninomiya, M.; Satoh, H.; Yamaguchi, Y.; Takenaka, H.; Koketsu, M. Antioxidative activity and chemical constituents of edible terrestrial algae Nostoc commune Vauch. Biosci. Biotechnol. Biochem. 2011, 75, 2175–2177, doi:10.1271/bbb.110466.
[32]  Ferroni, L.; Klisch, M.; Pancaldi, S.; H?der, D.-P. Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for UV-insensitivity of photosynthesis in Nostoc flagelliforme. Mar. Drugs 2010, 8, 106–121, doi:10.3390/md8010106.
[33]  Arima, H.; Horiguchi, N.; Takaichi, S.; Kofuji, R.; Ishida, K.; Wada, K.; Sakamoto, T. Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol. Ecol. 2012, 79, 34–45, doi:10.1111/j.1574-6941.2011.01195.x.
[34]  Garcia-Pichel, F.; Castenholz, R.W. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 1993, 59, 163–169.
[35]  Torres, A.; Enk, C.D.; Hochberg, M.; Srebnik, M. Porphyra-334, a potential natural source for UVA protective sunscreens. Photochem. Photobiol. Sci. 2006, 5, 432–435.
[36]  Yoshiki, M.; Tsuge, K.; Tsuruta, Y.; Yoshimura, T.; Koganemaru, K.; Sumi, T.; Matsui, T.; Matsumoto, K. Production of new antioxidant compound from mycosporine-like amino acid, porphyra-334 by heat treatment. Food Chem. 2009, 113, 1127–1132, doi:10.1016/j.foodchem.2008.08.087.
[37]  Whitehead, K.; Karentz, D.; Hedges, J.I. Mycosporine-like amino acids (MAAs) in phytoplankton, a herbivorous pteropod (Limacina helicina), and its pteropod predator (Clione antarctica) in McMurdo Bay, Antarctica. Mar. Biol. 2001, 139, 1013–1019, doi:10.1007/s002270100654.
[38]  Whitehead, K.; Hedges, J.I. Electrospray ionization tandem mass spectrometric and electron impact mass spectrometric characterization of mycosporine-like amino acids. Rapid Commun. Mass Spectrom. 2003, 17, 2133–2138, doi:10.1002/rcm.1162.
[39]  Agrawal, P.K. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 1992, 31, 3307–3330, doi:10.1016/0031-9422(92)83678-R.
[40]  Muraoka, O.; Morikawa, T.; Zhang, Y.; Ninomiya, K.; Nakamura, S.; Matsuda, H.; Yoshikawa, M. Novel megastigmanes with lipid accumulation inhibitory and lipid metabolism—Promoting activities in HepG2 cells from Sedum sarmentosum. Tetrahedron 2009, 65, 4142–4148, doi:10.1016/j.tet.2009.03.040.
[41]  Tsujino, I.; Yabe, K.; Sekikawa, I.; Hamanaka, N. Isolation and structure of a mycosporine from the red alga Chondrus yendoi. Tetrahedron Lett. 1978, 19, 1401–1402, doi:10.1016/S0040-4039(01)94556-3.
[42]  Carignan, M.O.; Cardozo, K.H.M.; Oliveira-Silva, D.; Colepicolo, P.; Carreto, J.I. Palythine-threonine, a major novel mycosporine-like amino acid (MAA) isolated from the hermatypic coral Pocillopora capitata. J. Photochem. Photobiol. B 2009, 94, 191–200, doi:10.1016/j.jphotobiol.2008.12.001.
[43]  Ingalls, A.E.; Whitehead, K.; Bridoux, M.C. Tinted windows: The presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms. Geochim. Cosmochim. Acta 2010, 74, 104–115, doi:10.1016/j.gca.2009.09.012.
[44]  Ito, S.; Hirata, Y. Isolation and structure of mycosporine from the zoanthid Palythoa tuberculosa. Tetrahedron Lett. 1977, 18, 2429–2430, doi:10.1016/S0040-4039(01)83784-9.
[45]  Won, J.J.W.; Chalker, B.E.; Rideout, J.A. Two new UV-absorbing compounds from Stylophora pistillata sulfate esters of mycosporine-like amino acids. Tetrahedron Lett. 1997, 38, 2525–2526, doi:10.1016/S0040-4039(97)00391-2.
[46]  Yamaba, M. Kanazawa University, Kanazawa, Ishikawa, Japan, 2012. Unpublished work.
[47]  B?hm, G.A.; Pfleiderer, W.; B?ger, P.; Scherer, S. Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. Biol. Chem. 1995, 270, 8536–8539.
[48]  Volkmann, M.; Whitehead, K.; Rütters, H.; Rullk?tter, J.; Gorbushina, A.A. Mycosporine-glutamicol-glucoside: A natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Commun. Mass Spectrom. 2003, 17, 897–902.
[49]  Volkmann, M.; Gorbushina, A.A. A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol. Lett. 2006, 255, 286–295, doi:10.1111/j.1574-6968.2006.00088.x.
[50]  Gorbushina, A.A.; Whitehead, K.; Dornieden, T.; Niesse, A.; Schulte, A.; Hedges, J.I. Black fungal colonies as units of survival: Hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can. J. Bot. 2003, 81, 131–138, doi:10.1139/b03-011.
[51]  Takano, S.; Nakanishi, A.; Uemura, D.; Hirata, Y. Isolation and structure of a 334 nm UV-absorbing substance, porphyra-334 from the red alga Porphyra tenera Kjellman. Chem. Lett. 1979, 8, 419–420.
[52]  Carreto, J.I.; Carignan, M.O.; Montoya, N.G. A high-resolution reverse-phase liquid chromatography method for the analysis of mycosporine-like amino acids (MAAs) in marine organisms. Mar. Biol. 2005, 146, 237–252, doi:10.1007/s00227-004-1447-y.
[53]  Sinha, R.P.; Ambasht, N.K.; Sinha, J.P.; Klisch, M.; H?der, D.-P. UV-B-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (Cyanobacteria). J. Photochem. Photobiol. B 2003, 71, 51–58, doi:10.1016/j.jphotobiol.2003.07.003.
[54]  Liu, Z.; H?der, D.-P.; Sommaruga, R. Occurrence of mycosporine-like amino acids (MAAs) in the bloom-forming cyanobacterium Microcystis aeruginosa. J. Plankton Res. 2004, 26, 963–966, doi:10.1093/plankt/fbh083.
[55]  Singh, S.P.; Sinha, R.P.; Klisch, M.; H?der, D.-P. Mycosporine-like amino acids (MAAs) profile of a rice-field cyanobacterium Anabaena doliolum as influenced by PAR and UVR. Planta 2008, 229, 225–233, doi:10.1007/s00425-008-0822-1.
[56]  Zhang, Z.; Tashiro, Y.; Matsukawa, S.; Ogawa, H. Influence of pH and temperature on the ultraviolet-absorbing properties of porphyra-334. Fish. Sci. 2005, 71, 1382–1384, doi:10.1111/j.1444-2906.2005.01106.x.
[57]  Sinha, R.P.; Singh, S.P.; H?der, D.P. Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J. Photochem. Photobiol. B 2007, 89, 29–35, doi:10.1016/j.jphotobiol.2007.07.006.
[58]  Llewellyn, C.A.; Airs, R.L. Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar. Drugs 2010, 8, 1273–1291, doi:10.3390/md8041273.
[59]  He, Y.-Y.; Klisch, M.; H?der, D.-P. Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochem. Photobiol. 2002, 76, 188–196, doi:10.1562/0031-8655(2002)076<0188:AOCTUB>2.0.CO;2.
[60]  Lee, T.-M.; Shiu, C.-T. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii. Mar. Environ. Res. 2009, 67, 8–16, doi:10.1016/j.marenvres.2008.09.006.
[61]  Zhang, L.; Li, L.; Wu, Q. Protective effects of mycosporine-like amino acids of Synechocystis sp. PCC 6803 and their partial characterization. J. Photochem. Photobiol. B 2007, 86, 240–245, doi:10.1016/j.jphotobiol.2006.10.006.
[62]  Conde, F.R.; Churio, M.S.; Previtali, C.M. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J. Photochem. Photobiol. B 2000, 56, 139–144, doi:10.1016/S1011-1344(00)00066-X.
[63]  Conde, F.R.; Churio, M.S.; Previtali, C.M. The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem. Photobiol. Sci. 2004, 3, 960–967, doi:10.1039/b405782a.
[64]  Dunlap, W.C.; Yamamoto, Y. Small-molecule antioxidants in marine organisms: Antioxidant activity of mycosporine-glycine. Comp. Biochem. Physiol. B 1995, 112, 105–114, doi:10.1016/0305-0491(95)00086-N.
[65]  Suh, H.-J.; Lee, H.-W.; Jung, J. Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency. Photochem. Photobiol. 2003, 78, 109–113, doi:10.1562/0031-8655(2003)078<0109:MGPBSA>2.0.CO;2.
[66]  Yakovleva, I.; Bhagooli, R.; Takemura, A.; Hidaka, M. Differential susceptibility to oxidative stress of two scleractinian corals: Antioxidant functioning of mycosporine-glycine. Comp. Biochem. Physiol. Part B 2004, 139, 721–730, doi:10.1016/j.cbpc.2004.08.016.
[67]  Scherer, S.; Potts, M. Novel water stress protein from a desiccation-tolerant cyanobacterium. J. Biol. Chem. 1989, 264, 12546–12553.
[68]  Hill, D.R.; Hladun, S.L.; Scherer, S.; Potts, M. Water stress proteins of Nostoc commune (Cyanobacteria) are secreted with UV-A/B-absorbing pigments and associate with 1,4-β-d-xylanxylanohydrolase activity. J. Biol. Chem. 1994, 269, 7726–7734.
[69]  Ehling-Schulz, M.; Bilger, W.; Scherer, S. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 1997, 179, 1940–1945.
[70]  Balskus, E.P.; Walsh, C.T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 2010, 329, 1653–1656, doi:10.1126/science.1193637.
[71]  Singh, S.P.; Klisch, M.; Sinha, R.P.; H?der, D.-P. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: A bioinformatics study. Genomics 2010, 95, 120–128, doi:10.1016/j.ygeno.2009.10.002.
[72]  Portwich, A.; Garcia-Pichel, F. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp. strain PCC 6912. Phycologia 2003, 42, 384–392, doi:10.2216/i0031-8884-42-4-384.1.
[73]  Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237, doi:10.1016/S0891-5849(98)00315-3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133